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1.0 SUMMARY

This report describes the activities of Option 1 of NASA LeRC Contract NAS 3-25646,
Advanced Small Rocket Chambers program. In this phase of the program, a high performance
Ir-Re 14 Ibf (62 N) chamber and nozzle which can be a direct replacement for a production
engine was designed, built, hot fired and vibration acceptance tested. It passed all acceptance
tests satisfactorily and demonstrated a 20 sec increase in I over the conventional 14 Ibf silicide
coated Cb chamber. The high performance engine uses the production valve and injector without
modification. Qualification tests remain to be done.

The overall objectives of the Advanced Small Rocket Chambers Program are to advance
the state-of-the-art of small chemical rocket chambers significantly by 1) examining fundamental
combustion processes, 2) evaluating new high temperature materials in relevant environments,
and 3) evaluating small rocket concepts by direct hot fire testing.

This activity was conducted under tasks 7, 8, and 9 of the program. The intent of this work
was to demonstrate the understanding of the combustion/materials interaction processes studied
in the first phase of the program by applying them to a flight-type rocket engine.

The approach used in this portion of the program was to demonstrate the performance
improvement that can be made by substitution of a high temperature (4000°F) (2200°C) Ir-Re
chamber for a production C-103 Cb silicide coated chamber and nozzle.

After detailed thermal, performance, mechanical, and dynamic design analyses of the full
engine, two Ir-Re chambers were built for Aerojet by Ultramet, using the chemical vapor
deposition (CVD) process.

The production 14 Ibf engine uses ~40% fuel film cooling; this is required to keep the Cb
chamber at an acceptable operating temperature of under 2400°F (1300°C). The requirement for
a cool boundary layer throughout the chamber and throat implies unmixed, unreacted fuel exiting
the nozzle which may produce a performance loss of about 20 sec and a potential source of
spacecraft contamination. Use of the production injector forces the Ir-Re engine to operate with
the 40% fuel film cooling. Incorporation of a secondary mixing device or Boundary Layer Trip
(BLT) within the combustion chamber, (Aerojet Patents 4882904 and 4936091) results in
elimination of the fuel film coolant, improvement in flow uniformity, and a significant

performance increase.

RPT/GO105.117 1 February 11, 1993



The geometry and location of the trip (BLT) was optimized for this particular
injector/chamber configuration by conducting hot firings in witness foil chambers to measure
performance and compatibility.

The Ir-Re chamber assembly is completed by brazing the optimized BLT fabricated from a
Pt-10% Rh alloy to the rhenium which in turn was brazed to a stainless steel flange that mates to
the production platelet injector and Moog bipropellant valve.

This engine assembly was successfully hot fired using the standard production acceptance
testing criteria. This was followed by completing a portion of the qualification testing during
which optical measurements were made of the exhaust. Measured specific impulse (Ig) was
304.8 sec at nominal conditions (the production engine I is 285 sec for the same conditions) an
increase in performance of 20 sec. A total test time of 746 sec were accumulated in 349 steady
state and pulsed starts with no hardware damage and satisfactory thermal performance.

The engine was successfully subjected to the production engine random vibration
acceptance test following the hot fire testing. Strain measurements made during these tests
indicate the engine will survive qualification level vibration tests.

RPT/GO105.117 February 11, 1993
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2.0 INTRODUCTION

The Advanced Small Rocket Chambers Program, NASA LeRC Contract NAS 3-25646 has
as its goal the understanding of rocket chamber material/combustion interaction mechanisms for
high temperature radiation-cooled rocket engines.

Program Logijc

The logié to carry out this program is shown in Figure 2-1. The program is a base program
plus three options consisting of 15 tasks and reporting in Task 16. The Basic Program, Tasks 1
through 6, included study and selection of materials, propellants and fabrication processes, basic
combustion product/material interaction research in collaboration with Sandia/Livermore
Combustion Research Facility using their advanced laser diagnostics techniques, and exposure of
candidate chamber materials to simulated rocket engine conditions.

These tasks led to the portion of the program covered by this report, Option I, Tasks 7, 8,
and 9. In this option, the understanding of the knowledge gained in the Basic Program was
demonstrated by designing, building and testing a flight-type thruster which had significantly
improved performance relative to engines of conventional design, As part of this program,
components were built for two engines; one engine was assembled, and successfully passed hot
fire and vibration acceptance tests.

Activity on this program began in November, 1989; technical activity was concluded in
March 1991, Figure 2-2. It consisted of design, fabrication, and testing of the flight type
advanced 14 Ibf Ir-Re engine (AJ10-220 HP). Hot fire testing was interrupted in November 1990
for vibration testing, which was conducted in February of 1991. Resumption of hot fire testing
was deferred to focus on Option 3 demonstration of a 100 Ibf Ir-Re engine, which is in process.

2.1 PROGRAM APPROACH

The initial program concept was to conduct this option of the program with a generic
5 Ibf thruster. However, a more rational approach developed in which a direct comparison could
be made between a current engine in production with a state-of-the-art radiation cooled chamber
and the improved advanced Ir-Re chamber. For this purpose, the 14 Ibf silicide coated
columbium thruster in production at Aerojet was chosen as a model. This engine is flight
qualified and has rigorous procedures in place for hot fire and vibration acceptance tests which
could be adapted directly. It uses a high performance platelet injector and a Moog dual shutoff

RPT/GO105.117 February 11, 1993
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torque motor bipropellant valve. Since the Cb/Si chamber bolts to the valve, it was practical to
remove it and replace it with an Ir-Re chamber with no other changes to the engine.

A set of hardware which had been well-characterized in development testing was
loaned to the contract for this program. The characteristics of the production 14 1bf engine are
summarized in Figure 2-3.

2.2 DESIGN

The task 7 design activities included development of a long life chamber design
which would provide a significant improvement in performance over the production unit while
still meeting its front end thermal and vibration requirements.

The production engine injector design provides 40% film cooling of the chamber wall
to maintain the silicide-coated Cb chamber at a safe operating temperature. Since the Ir-Re
chamber does not require film cooling for chamber protection (although it is essential for front-
end temperature management) the new chamber design incorporated Aerojet’s two stage
combustor (Patcnts 4882904 and 4936091). The invention allows the engine to run at maximum
) performance by mixing ‘the film cooling w1th the core ﬂow In domg s0, the chamber wall
downstream of the secondary mixing stage reaches temperatures in the 3500°F range, about
1000°F higher than can be tolerated by the Si-Cb.

The 51gn1ﬁcant characteristics of the design are the length and height of the trip which
" must be OptlIanCd for a spec1ﬁc installation (m]ector/operaﬁhé point/chamber geometry) To set
the trip design hot fire optimization tests were conducted as part of tasks 7.7, 7.8, and 7.9. These
permitted choice of a trip geometry which could give long chamber life because of compatible

chamber wall and nozzle conditions, while still giving acceptably high performance.

Attachment of the hot Ir-Re chamber to the relatively cold engine front end is a
challenging design task. The transition must withstand thousands of thermal cycles and block
thermal input from steady state, pulsed, and post fire heat soak. It requires joining three
dissimilar metals, the Ir-Re chamber, the Pt-10% Rh trip, and the 304 stainless flange which
duplicates the production engine interface and which bolts to the injector. Joining experiments
were conducted to determine that satisfactory joints could be made. Thermal and structural
dynamic analyses were conducted to assure that the engine could withstand the hot fire thermal

environment and the launch vibration environment.

RPT/GO105.117 6 February 11, 1993
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s 1 STERDY STATE
- ACCEPTANCE TEST DATA
DATA SHEET NO. 2

|
- NOMENCLATURE: !4 LB.F REACTION CONTROL THRUSTER PROE _ ! OF__ 2
. PART NUMBER: _1197555- SERIAL NUMBER:_0000001
RCCEPTANCE TEST BPECIFICATIONs  -47146
- TEST NO.s  2504-148-R1-589 TEST STAND: ___ -1
_ TEST DATEs _11-20-85 CONTRACT NO.: _ 5804
TEST TIMEs _ 2248 ________ WORK ORDER NO.: 2604 21

COMPUTER PROORANS: BTERODY S8TATE PERFORMANCE JOB JO860

SPECIFIED | SPECIFICATION
, 1TEN TEST VALUE | “yaLue AND PRRAGRAPH
- ( SUMMARIZED DATA
= ..1 DURATION OF STERDY STATE SUMMARY ATS 3.10.2.1
= PERIOD. FS1 + IS TO 20 SECONDS 5.0 S MIN.
1.2 MIXTURE RATIO AT STANDARD INLET ATS 4.2.4.2.2.1
L CONDITIONS. MR-SIC 1.65 1.6 - 1.7
= §.3 VACUUM THRUST AT STANDARD INLET ATS 4.2.4.2.2.1
CONDITIONS. FVAC-SIC LBS. 14.49 13.3-14.7
- 1.4 VRACUUM SPECIFIC IMPULSE AT _STANDARD ATS 4.2.4.2.2.1
= INCET CONDITIONS. 1SP-SIC SECS.- 287.9 270. MIN.
= 1.5 PROPELLANT INLET PRESSURE. PSIR ATS 4.2.4.2.1
OXIDIZER POLT 220 215 - 225
g FUEL PFLY 223 215 - 225
= 1.6 PROPELLANT INLET TEMPERATURE. DEG.F ATS 4.2.4.2.1
= OXIDIZER TPO 71 65 - 75
FUEL TPF 20 g5 - 78
- NOTE: =« SIGNIFIES DUT DF SPEC. CONDITION

CERTIFICARTION

ENGINEERING ANALYST:s M DATE: __&az_-?-? 41 VA7 2

LBl

o
i

w=aa
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Figure 2-3. Characteristics of Production 14 Ibf Engine (Si/Cb), Page 1 of 2
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- ~ STEADY STATE
| ACCEPTANCE TEST DATA
DATA SHEET NO. 2
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NOMENCLARTURE: 14 LB.F RERCT}QN CONTROL THRUSTER PRDE 2 OF 2

ik n“

T

PART NUMBER: 1187555- SERIAL NUMBER: 0000001
TEBT NO.» 2504-148-A1-589 SPECIFIED SPECIFICATION
TEST VALUE | “yq e AND PARAORRPH
ITEN
1.7 VALVE COMMAND VOLTRGE. VOLTS 22.9 -r23 - 25 ATS 4.2.4.2.1
1.8 MAXIMUN THRUSTER ROUGHNESS DURING ATS 4.2.4.2.2
STEARDY STATE OPERATION. I 2.5 10 MAX.
1.8 STERDY STATE THRUST REPEATABILITY. 7 .0 2.0 10 2.4 ATS 4.2.4.2.2.1
2. INSTANTANEOUS DRTA
2.1 THRUSTER RESPONSE. MILLISECS ATS 4.2.4.2.2
: START-UP 10 20 HAX.
. SHUTDOKWN 11 40 HAX.
(_ 2 SIMULRTED ALTITUDE AT FS1. FEET 182274 120000 MIN{ ARTS 4.2.4
2.3 TEST DURATION. SECS. 100.00 g5 - 105 ATS 4.2.4.2.1
2.4 MAXIMUM CHAMBER TFHPFRQTHRE ATS 4.7.4.2.2
DURING TEST, DEG.F 1978 2000 MAX.
INSTRUMENT CALIBRATION NOT CERTI!FIED.
2.5 MAXIMUN F lNG OETECTION SENSOR 2.4.2.2
DURING TEST. DEG.F 185 150 KIN.
3. SULTS VERI N
VERIFIED BY:
QUALITY RSSURANCE
® NOTE: ACTION TRKEN
49 L0OO PAOE

Figure 2-3. Characteristics of Production 14 Ibf Engine (Si/Cb), Page 2 of 2
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Fabrication

Two sets of chamber hardware were fabricated, the Ir-Re chambers by Ultramet using
the CVD process and the Pt-10% Rh trip rings by Johnson-Mathey by conventional machining.
The components were joined by brazing, inspected and assembled in the same facility and by the
same personnel who produce the production 14 Ibf engine. The unit was assembled with a flight
transducer and the forward joint sealing system used on the flight engine.

Testing

The engine assembly was then instrumented with thermocouples to measure
temperatures at critical locations and installed in Aerojet’s altitude test facility, where it was
subjected to acceptance, performance and a portion of a qualification test series. The engine
performance and thermal characteristics matched predictions. Performance was 20 sec higher
than the production engine. No measurable changes occurred in throat or chamber dimensions in
746 sec of testing and 349 starts.

After hot firing, the engine was disassembled, inspected and then reassembled for
vibration acceptance testing and installed in a two-engine flight module. In addition to the
normal acceptance test measurements, the engine was instrumented with strain gages at the
throat, and accelerometers on the valve body and at the nozzle exit. The engine was subjected to
acceptance test levels of random vibration on the X-, Y- and Z- axes. Each test series started
-12 db down and progressed in 3 db steps to the -0 db level. After each run, the nozzle exit
location was measured to determine if any permanent deflection resulted. None occurred.

The engine passed the acceptance test series without damage. Strain measurements
made during these tests were used to predict the engine’s response to the +3db qualification
random vibration tests. Positive margins on stress are predicted for all critical areas.

The advanced 14 Ibf Ir-Re thruster has proven the utility of this material system over
conventional silicide coated Cb for small radiation cooled thrusters using storable propellants. A
second set of components is available; these can be used to demonstrate the repeatability of these
results. With a modest effort the two sets of hardware can be used to demonstrate flight
qualification of this concept.

RPT/G0105.117 9 February 11, 1993



3.0 TECHNICAL DISCUSSION

In Option 1 of the program, an advanced, high-temperature, iridium-rhenium 14 1bF
reaction control thruster (RCT) was designed, fabricated, and tested. Aerojet is currently in
production with a ﬂight-qualiﬁéd 14 1bF RCT constructed of columbium alloy C103. The new
iridium-rhenium thruster built in this program was designed to provide a substantially higher
specific impulse than the current production 14 IbF RCT, without reducing the operational life,
thermal, or vibrational requirements of the current engine.

The objectives of this option were accomplished through the conduct of three technical
tasks (1) Thruster Design, (2) Thruster Fabrication, and (3) Thruster Hot-Fire and Vibration
Tests. The overall organization of the three tasks is shown in Figure 3.0-1. This section of the
report details the approach and results of each of these three tasks.

3.1 THRUSTER DESIGN

3.1.1  Preliminary Thruster Design

The preliminary design of the Ir-Re thrust chamber was derived from the
current 14 IbF production RCT.

The qualification level hot-fire, life, and vibration requirements of the
existing 14 1bf RCT were adopted as the design basis for the Ir-Re thruster. The Ir-Re thruster
was designed to use an injector and valve from the current production program. This
requirement established the interface of the front-end flange and the inside diameter of the

“boundary layer trip ring. Other constraints also kept the new design similar to that of the current

prbdﬁétibn engine. The nominal Pc (100 psia) and MR (1.65) were not charngcd. The chamber

throat diameter (.320 + .004 in.) and nozzle exit expansion area ratio (75:1) were copied from the

current production RCT.

These design constraints resulted in a preliminary design of the Ir-Re
chamber sketched in Figure 3.1-1. Note that on this figure, there are three dimensions which
were not specified at the preliminary design phase, namely:

TL — Boundary Layer Trip Length

Ty — Boundary Layer Trip Height and

L’ — Chamber Length

RPT/GO105.117/8 1 o February 25,1993
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Thruster Design

14 Ibf RCT Optimization I
Chamber Design Tests 1

Task 8.0

Thruster Fabrication

Chamber Final Machine
Fabrication and Assembly

Task 9.0

Thruster Tests

Hot-Fire Vibration
Tests Tests

M15-2-10

Figure 3.0-1 Program Logic for Option 1. Design, Fabrication, and
Test of an Advanced 14 Ibf Ir-Re Reaction Control Thruster
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These three items were the subject of parametric thermal and dynamic
analysis. Hot-fire optimization tests were also conducted to support selection of these design
values. Based on previous experience with Ir-Re chambers at the 5-Ibf level a range of possible
values was developed for each of these three dimensions. These ranges are shown in
Figure 3.1-2.

3.1.2 Thermal and Performance Analysis

A 3-D ANSYS model of the proposed 14 Ibf Ir-Re chamber was constructed
to support thermal analysis. Figures 3.1-3 and 3.1-4 document the initial model geometry.

Three types of analysis were done: (1) steady state wall temperature profiles,
(2) transient wall temperatures during soakback, and (3) thermal stress profiles. Pulse mode
operation was not analyzed. A summary of the results is presented in this section, and the
memoranda which discuss the thermal analysis results more completely are included as
Appendix B of this report. All analyses used the shortest L’ chamber (2.1 in.) because it
represented the worst case for thermal management.

The steady state thermal analysis predicted that the engine would have
adequate thermal margin during steady state operation. The predicted maximum wall
temperature in the chamber was 3562°F, just upstream of the throat. Front end thermal profiles
were calculated based on an assumed fuel-film cooled temperature of 300°F on the inside surface
of the trip ring. This showed that the shortest trip ring length being considered (0.50 in.) would
result in unacéeptably high front end temperatures at the platinum-rhenium joint and at the front
end flange. Increasing the trip ring length to 0.75 in. solved this problem, and lowered the
temperatures in the front end by approximately 400°F. Further addition to the trip ring length
should continue to ameliorate the front end thermal management issues, assuming the fuel-film
cooling layer remains effective to the end of the trip ring. However, examination of hot-fire
thermal data from the current 14 Ibf production engine indicated that the fuel-film cooling layer
is only effective for the first 0.8 in. of length. Thus, there may be little advantage to lengthening
the trip ring. This was later verified by testing during the optimization test series.

Transient thermal analysis predicted that the chamber would accommodate
thermal soakback from a single steady state burn without overheating the injector, valve, or the
trip ring-to-chamber joint. The transient thermal analysis was based on a trip ring length of 0.75
in. and a chamber L’ of 2.1 in. The thermal profile predicted for steady state operation was
assumed at time zero. The transient analysis predicted temperature rises during thermal

RPT/GO105.117 1 3 February 11, 1993



Trip Height, Ty
Trip Length, T
Chamber Barrel Length, L'

Note: All Dimensions in Inches
14.12.32 ’

Figure 3.1-2. Ranges of Critical Chamber Dimensions Were Established

During Preliminary Design
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soakback of 200°F in the front end stainless steel flange, 275°F in the platinum trip ring, and
715°F at the attachment between the rhenium chamber and the platinum trip ring. These are all
acceptable soakback conditions.

However, multiple firings and various duty cycles were not considered as
part of the analysis and the ability of the engine to successfully restart during thermal soakback
conditions was not analyzed. Analyses indicate that the platinum BLT surface temperature will
exceed the MMH autodecomposition temperature (450°F, 230°C) within one second of
shutdown and requires at least 30 to 60 seconds cooldown before the temperature is again below
decomposition temperature. The effect of MMH decomposition on hot restart remains to be
determined, but as shown in Figure 3.1-5, the current 14-1bf engine successfully restarts at front
end flange and barrel temperatures approaching 600°F. This is well above the predicted 500°F
maximum front end flange temperature for the flight-type Ir-Re chamber. The hot-fire tests
demonstrated the ability of the Ir-Re engine to meet the steady state and 10% duty cycles
demanded of the current 14-1bf engine.

Performance calculations were conducted to predict the specific impulse of
the engine. Of particular interest was the effect of a change in the nozzle contour from the
current C103 engine. For maximum performance, the current production engine exits the throat
with a short 0.046 in. radius corner. Failure of the iridium coating occurred in this area with a
similar small radius exit with a 5 Ibf chamber on a previous Aerojet program. The exact cause of
this failure is not known with certainty, but the small radius of curvature does increase the stress
in this area. It was decided to adopt a larger radius of curvature on the exit of the throat if it
could be done without a large performance penalty. The performance of two nozzle contour
designs were analyzed. The first was an Ir-Re chamber with the current RCT nozzle contour.
The second design increased the radius of curvature on the downstream side of the throat to equal
that of the upstream side, i.e., 0.300 inches (as shown in Figure 3.1-3). This contour was then
blended into the current nozzle design approximately 0.760 in. downstream of the throat. TDK-
BLM performance calculations showed the large radius exit would cost less than one second of
specific impulse, and that the predicted performance of this engine with C* efficiency of 98%
was approximately 305 seconds at nominal Pc and MR. This is approximately a 22 second
improvement over the current 14 1bf C103 RCT. It was decided to sacrifice a little performance
and adopt the large exit radius nozzle contour.

RPT/GOID5.117 1 7 February 11, 1993
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These thermal and performance calculations establish the inside contour of
the Ir-Re chamber. Any additional changes required to accommodate vibrational loads were
made through adjustments in the wall thickness and outside dimensions of the RCT.

3.1.3 Vibration Analysis

A finite element ANSYS model of the 14 Ibf Ir-Re chamber was constructed
to support dynamic structural analysis of the chamber. The stress profile of the chamber was
calculated based on the qualification-level random vibration spectrum for the current 14-1bf
RCTM. The chamber was modeled as a stand-alone RCT, with a rigid attachment at the injector
interface. No modeling was done of the injector, valve, or the module structure, in which each
RCT resides. This is a significant factor in the interpretation of the results. In the vibration tests
and in the actual operating service, the vibration spectrum is applied to the outside of the RCTM.
It has been established that the module assembly attenuates much of the vibration energy. Thus,
this analysis in which the full vibration spectrum was applied directly to chamber yielded
conservative estimates of the resulting stress profile.

Four cases were analyzed. The dynamic response of the chamber was
calculated and the sensitivity of the dynamic response to various design alternatives was
estimated using these four cases.

Two areas of the chamber were calculated to have stress above the estimated
yield strength of the materials. The first area was at the throat, where the calculated stress on the
rhenium exceeded 70,000 psi. The second area was at the BLT, where the stress in the platinum
was as high as 23,000 psi. Figure 3.1-6 summarizes the stresses calculated in these two areas for
the three cases analyzed. It should be noted that the entries in this table are equal to three times
the one sigma stress calculated in these areas. This margin of safety is applied to provide a
99.7% statistical probability that the actual maximum stress encountered in random vibration
testing will be less than the values shown in this table.

Based on these preliminary structural analyses, a number of design

recommendations were developed:

e The wall around the chamber throat was thickened to approximately
0.040-in. This reduced the stress at the throat by approximately 10%,
without a significant increase in stress at the front end of the chamber.
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Maximum Stresses Maximum Stresses
Eqivalent to Equivalent to
Von Mises Yield Von Mises Yield
Criterion at Criterion at
Throat Section Front End
Description (ksi) (ksi)
1.9 inch throat length with 76.8 (55.0)* 8.4 (30.0)**
struts and 0.028 inch throat
thickness
1.9 inch throat length 729 (55.0) 24.6 (30.0)
without struts and 0.028
inch throat thickness
3.3 inch throat length with 74.4 (55.0) 16.5 (30.0)
struts and 0.028 inch throat
thickness
3.3 inch throat length with 66.0 (55.0) 16.0 (30.0)
struts and 0.04 inch throat
thickness

The number in parenthesis is the corresponding yield strength of the material.

*CVD Rhenium, as deposited, based on limited data.
**Pt-10 Rh

Maximum stresses shown in the table are 3-sigma values.

Figure 3.1-6. Induced Stress Equivalent to Von Mises Yield
Criterion for 14-Ib Nozzle

RPT/D0201.39-T/9 2 0

mii 1

i
I

mni

i

A

Rk



[T |

i

I

e
.

T

!
1

I nn!

» A high strength platinum alloy (Pt-10Rh) was used in construction of the
BLT. Use of this higher strength material increased the allowable stress
in this area by a factor of 2. This enabled design of the chamber without

the use of external support struts.

A memorandum discussing the dynamics analysis performed is included in

Appendix A of this report.

3.1.4 Optimization Tests

As discussed in Section 3.1, hot-fire optimization tests were conducted to
determine the final design of the BLT height (Tq), the BLT length (Tr), and the overall chamber
barrel length (L’).

The tests used the same injector and valves which were eventually tested with
the Ir-Re chambers. All testing was conducted at sea level using a three-piece stainless steel heat
sink chamber. The design of the optimization hardware is shown in Figure 3.1-7, and is pictured
fully assembled in Figure 3.1-8. As seen in the assembly view of Figure 3.1-7, each test
configuration included a front end flange (-1), a cylindrical barrel section -2, -3, or -4), and a
throat (-5 or -10). The front end flange was bolted to the injector and valve and was not removed
during the test series. The barrel and throat pieces, on the other hand, were changed before each
test. The barrel and throat piece was lined with 0.010-in. Grafoil and 0.003-in. rhenium prior to
assembly on the test stand in most of the tests.

Figure 3.1-9 shows a drawing of the trip rings used in the optimization tests.
Eight trip rings were built, four from stainless steel -2, -3, -5, and -6), and four from Pt-10Rh -5,
-6, -8, and -9). The tip of one stainless steel trip ring was cut off to provide a trip ring of zero trip
height. This trip ring had an overall length of 0.43 in.

The location of temperature and pressure measurements for the test chamber
are shown in Figure 3.1-10. The engine plume was monitored for the presence of rhenium with a

two-channel emission radiometer. Steady state thrust measurements were obtained in every test.

Twelve hot-fire tests were conducted during the optimization test series. The
independent test variables were trip height (TH), trip length (TL), and chamber length (L’). The
dependent variables were the rhenium foil loss rate and the thrust performance of the engine.
The objective was to find the combination of design parameters which would minimize rhenium

loss and maximize engine performance. The set of test conditions used to investigate the

RPT/G0105.117 21 February 11, 1993
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Figure 3.1-10. 14-Lbf Optimization Hardware Instrumentation Locations
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relationship of each of these variables was optimized through use of Taguchi analysis. The test

conditions and results are summarized in Figure 3.1-11.

Test 101 was the first checkout test (no rhenium foil). It was killed on low
chamber pressure after only 0.3 sec. No attempt was made to reduce the performance data after
this short, non-steady state firing. The low chamber pressure kill was attributed to the use of a Pc
tap with a long response time. On subsequent tests, an alternative Pc tap was used for redline

monitoring and data reduction.

Tests 102 and 103 were also checkout tests (no rhenium foil) used to adjust
line pressures to obtain the correct Pc (100 psia) and MR (1.65). Performance data were
averaged over one second intervals on these two tests and compared with theoretical C* and Isp
calculated by TDK-BLM runs for those particular conditions. Energy Release Efficiencies
(Measured Isp/Theoretical Isp) of 98.6% and 98.4% were obtained for runs 102 and 103,
respectively. Calibration of the thrust stand instrumentation was adequate and a chamber barrel
and nozzle lined with rhenium foil were mounted on the test stand prior to the next test.

Test 104 was conducted at nominal MR and Pc conditions. No damage to the
chamber and nozzle foils was seen upon visual examination after the test. Asa result, the
targeted MR was increased to 1.9 for Test 105. Again, post test examination did not show any
rhenium erosion, and the targeted MR was increased to 2.0 for Test 106. During this test, marks
were observed on the rhenium foil in the nozzle. All subsequent tests were run at a nominal MR
of 2.0.

The data were analyzed by several independent methods. The pre- and post
test appearance of each piece of hardware was examined, both visually and under an optical
microscope. Particular attention was paid to the condition of the rhenium foils and the surfaces
of the trip ring. Photographs recorded the post test condition of all of the foils. The weight of
each foil was measured, both alone and as part of the assembled hardware, before and after each
test. Rhenium loss rates were calculated based on the individual foil weights before and after the
tests (See Figure 3.1-12). Theoretical Isp and C* values were calculated by TDK-BLM for each
test condition and compared with the measured thrust stand performance. Data from a plume
radiometer were analyzed for the presence of rhenium in the engine plume.

Figures 3.1-13 through 3.1-16 present an overall summary of the
performance and material compatibility data as a function of the two most critical test parameters
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— chamber length and trip height. The major conclusions reached from the optimization tests
follow.

1. An increase in the trip ring height from O to 0.080 in. improved both the
material compatibility and the delivered performance of the engine.

Figures 3.1-17 and 3.1-18 show the thenium loss rate in the barrel and the
nozzle as a function of trip height. Partlcularly at the nozzle the thenium loss rate is a strong
function of trip height. This is confirmed by visual inspection of the rhenium foils. As shown in
Figures 3.1-19 and 3.1-20 the foils from the test with a zero height trip ring (Test 108) show
major damage. Plume radiometer data also support the conclusions that rhenium loss rates
decreased when the trip ring height was increased, as shown in Figure 3.1-21. The radiometer
data are plotted as a function of the square root of the rhenium concentration in the plume
(calculated by foil weight differences) in this figure.

The performance of the engme was definitely improved by increasing the trip
height. Figures 3.1- 22 and 3.1-23 show the percentage of theoretical Isp and C* measured in the
tests as a function of trip height. The lowest Isp efficiencies were measured in tests with the
lowest trip rings. At zero trip height, 91.5% of theoretical Isp was attained. This is within
approximately 1% of the nominal performance of the current 14 1bf production engine, and
corresponds to an Isp of 282 sec at an area ratio of 75:1. The highest Isp efficiencies were
delivered in the three tests with the highest trip ring. The average Isp delivered during these
three tests was approximately 97.9% of theoretical, which corresponds to an Isp of 302 sec at an
area ratio of 75:1.

2. Anincrease in the chamber length from 2.1 to 3.5 in. improved both the
material compatibility and delivered performance of the engine.

Figures 3.1-17 and 3.1-18 show the rhenium loss rate in the barrel and nozzle
as a function of chamber length. Particularly in the nozzle, the rhenium loss rate is a strong
function of chamber length. This was confirmed by visual inspection of the rhenium foils, as
documented in Figures 3.1-19 and 3.1-20. Plume emission data support the conclusion than
rhenium loss rates decreased as the chamber length increased. ‘

The performance of the engine was also 1mpr0ved by an increase in the
chamber length. Figures 3.1-22 and 3.1-23 show the percentage of theoretical Isp and C*
attained in the tests as a function of chamber length.
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Figure 3.1-19. Post Test Appearance of Chamber Barrel Foils
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3. Increasing the trip length from 0.75 to 1.00 inches had only a small impact
on either the material compatibility or the delivered performance of the engine.

Figures 3.1-17 and 3.1-18 show the material loss rate in the barrel and nozzle
as a function of trip ring length. It appears that there is a minimum in the rhenium loss rate curve
at a trip ring length of 0.75 in. Examination of matched parts of tests, where the trip length is the
only differing parameter (109, 112) and (104, 111) supports this conclusion. However, the loss
rate of iridium is still anticipated to be very low, at a trip length of either 0.75 or 1.00 in.

An increase in trip length does not have a clear effect on the delivered
performance of the engine. As seen in Figures 3.1-22 and 3.1-23, an increase in trip length from
0.75 to 1.00 in. increased the Isp efficiency, but decreased the C* efficiency.

4. The interchangeable nozzle section provided a more sensitive test section
for measuring material compatibility than the chamber barrel.

As seen in the material loss data, there was much more difference in the
rhenium loss rates from test to test in the nozzle than there was in the barrel. Photographs of the
foils from the nozzle and the chamber confirm that there was much more visible damage to the
nozzle foils than to the barrel foils. This is consistent with the results from long duration firings
of 5 Ibf Ir-Re chambers.

5. Increasing the MR from 1.65 to 2.00 had an uncertain effect on material
compatibility and a minimal impact on delivered performance.

As shown in Figures 3.1-17 and 3.1-18, the material loss rates in the chamber
appear to go down in the chamber and up in the nozzle with increasing MR. However, it should
be noted that these curves are based on only one low MR test (Test 104). Still, concern was
raised by the fact that the only test near the nominal 1.65 MR produced a high material recession
rate in the chamber. However, post test weight of the chamber and foil assembly was higher than
the pretest assembly weight, which indicated no material loss. As well, visual examination of the
chamber and nozzle foils from Test 104 did not indicate heavy damage, as shown in Figures
3.1-19 and 3.1-20. It may be that the pretest foil weight was in error, though it is impossible to
confirm this now.

An increase in MR did not have a major impact on the performance of the
engine, as documented in Figures 3.1-17 and 3.1-18.
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6. No trip rings were damaged during the tests.

A major concern prior to the optimization tests was loss of the trip ring tip,
either through rapid oxidation or melting. This was not observed in any tests. Stainless steel tip
rings of 0.030-in. trip height were not damaged, nor were the 0.050 or 0.080 in. high Pt-10Rh
trips. No weight loss was measured on any trip rings, and SEM examination of the tip surface
did not show significant material loss.

As a result of the optimization tests, design decisions were made about the
flight-type Ir-Re hardware. The trip ring was made to a length of 1.00 in. and a height of 0.08 in.
The height of the trip ring was chosen because of its advantageous effect on chamber
compatibility and performance. The 1.00 in. long trip ring was chosen because it offers
improved thermal management of the front end.

A chamber length of 2.7 in. was selected because it represented a
compromise between good combustion performance (the longer the better) and good vibration
performance (the shorter the better). The chambers were fabricated to provide an L’ of 2.9 in. to
reduce fabrication risk. If the first braze run of the platinum trip ring onto the chamber were
unsatisfactory, the chamber could be cut again, eliminating the unsatisfactory braze joint. The
trip ring could then be reattached and still maintain an overall L’ of 2.7 in. In fact, this proved to
be unnecessary, as all braze operations were successful the first time. Decisions on these design
parameters allowed the release of the final drawings of the chamber and trip ring. The released
drawings for these components are shown in Figure 3.1-24 and 3.1-25, respectively. Figure
3.1-26 shows the set of optimization test components.

3.1.5 Assembly Design

Concurrent with the conduct of the optimization tests, assembly drawings of
the Ir-Re chamber, trip ring, and front-end flange were prepared. Various concepts and materials
for the metallurgical joints at the front end were proposed. For each of the concepts, the
assembly procedures were thoroughly discussed, and had considerable impact on the final design
of the front end pieces.

Final selection was an assembly with two braze joints formed simultaneously.
Drawing 1204490 (Figure 3.1-27) is the final assembly drawing which was released for assembly
of the Ir-Re 14-1bf RCT design.
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3.2 THRUSTER FABRICATION

Fabrication of the 14 Ibf Ir-Re RCT’s was accomplished in two subtasks: (1)
Chamber Fabrication and (2) Chamber Assembly. In the first of these subtasks, 2 Ir-Re
chambers, 2 Pt-10 Rh boundary layer trip rings, and 4 stainless steel flanges were fabricated and
delivered to Aerojet. Two injectors and one bipropellant valve were furnished by the current
C103 RCTM production program. In the second of the subtasks, the chamber, trip ring, and
flange were brazed together, and then bolted onto an injector and valve for hot-fire testing. This
section of the report documents the events of each of these subtasks.

3.2.1 Chamber Fabrication

Two 14 Ibf Ir-Re chambers were built and delivered to Aerojet by Ultramet.
Ultramet fabricated the chambers in six distinct steps: (1) fabricate molybdenum male mandrel,
(2) apply by CVD .001-.002 in. Ir coating, followed by the structural rhenium layer, (3) grind the
rhenium layer to reduce the wall thickness and weight of chamber, (4) cut the chamber to
specified length, (5) etch the molybdenum mendrel from the inside and (6) apply a thin dentoid
(tooth like), high emissivity black coating of rhenium to the chamber O.D. Ultramet considers
some details of these steps proprietary, and was not forthcoming with procedures or status either
during or after completion of the chambers. In fact, as documented in this section, the chambers
- did not go through identical fabrication processes. Fabrication of the chambers required five

months.

Ultramet forwarded diameter measurements of chamber S/N 1 at the
completion of the rhenium CVD run. A summary of the measurements is shown in Figure 3.2-1.
The iridium layer was successfully applied to a nominal thickness of 2.8 mils in the throat. The
rhenium layer was then applied in one CVD run, without masking the nozzle or barrel sections of
the chamber. As a result, a wall thickness of 0.047-in. was obtained in the throat, but only after a
large amount of excess rhenium had been deposited on the chamber barrel and nozzle. Excess
rhenium in the chamber barrel would adversely affect thermal management of the front end by
reducing the efficiency of the thermal dam. Excess rhenium in the skirt would adversely effect
the ability of the chamber to withstand the vibration test environment. Assuming a simple
cantilevered beam analogy, the moment provided by this as-fabricated design was calculated and
compared to the analyzed geometry. These calculations showed the moment of the as-fabricated
skirt was approximately 2.5 times more than the analyzed geometry.
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Ultramet etched the molybdenum mandrel from the inside, constructed
tooling to locate and hold the true center of the CVD structure, and ground the rhenium layer of
chamber S/N 1 to near-point dimensions. Measurements of the chamber wall thickness provided
by Ultramet after the grinding operation are shown in Figure 3.2-2. As a final step, the high
emissivity black coating was applied to the outside of the chamber, and the chamber front end
was ground to accommodate the front-end trip ring and flange assembly.

The rhenium chamber S/N 2 was applied in two layers. The first layer
applied Re to a maximum thickness of .016 in. in the nozzle skirt. The nozzle was then masked
off and rhenium was applied until the throat was clearly above the minimum required .040 in.
thickness.

Excess rhenium was ground from this part with the mandrel still in place.
Figure 3.2-3 shows the thickness of the Ir and Re layers of chamber S/N 2 before and after the
grinding operation.

In spite of the improved control of the deposition process, the wall thickness
of chamber S/N 2 was still not in conformance with the original drawings of the chamber.
However, Ultramet stated that there was a significant risk of breaking the part at the throat with
continued grinding. Estimates of the total moment of the as-fabricated skirt were made. The
fabricated nozzle developed approximately 30% more moment than the nozzle which was
designed and analyzed. Partially offsetting this, the most sensitive structural portion of the
chamber, the throat, was also approximately 20% thicker than the analyzed design, and thus
could accommodate a higher skirt mass. Given the potential consequences of failing the part
because of further grinding, and the resulting delay in the program, it was decided to accept
delivery of the chamber.

Chamber S/N 2 was cut to length, and the final coating was applied. The
molybdenum mandrel was then etched away. After the mandrel was removed, Ultramet
performed a final dye penetrant inspection of the iridium coating. They concluded from this
inspection that there was a crack around the entire circumference of the throat. They shipped the
part to Acrojet with this caveat.

Upon arrival at Aerojet, the chamber was photographed (Figure 3.2-4) and
carefully inspected. Visual examination showed a slight anomaly at the chamber throat. The
inside of the chamber was examined with a borescope. No cracks could be found in the coating,
though an irregularity in the contour and a flaky appearance on the inside surface near the throat
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was observed. The chamber was flushed with alcohol to remove any loose material from the
inside surface. A second borescope inspection indicated that the loose flakes of material had
been removed by the alcohol rinse, though a slight bump or depression (it was impossible to tell
which) could still be observed through the borescope. No cracks or discontinuity of the coating
could be seen.

It was concluded from these examinations and further telephone
conversations with Ultramet that there was no crack in the coating, and that the small anomaly of
the contour, along with the loose material in the throat, was responsible for an incorrect

interpretation of the dye-penetrant test.

Detailed dimensional inspections of chamber S/N 2 were conducted by the
Aerojet Q/A staff. All diameter and wall thickness dimensions upstream of the throat were to
print. Two slight problems were discovered during this inspection. First, the front end of the
chamber was not cut perpendicularly to the barrel and throat. The maximum error in the cut was
approximately 0.005-in. This may introduce a very slight cant (0.3°) of the front end trip ring
and injector relative to the centerline of the barrel. This was not expected to be a problem in hot-
fire test. Second, the wall thickness varied substantially around the circumference of the skirt.
The wall thickness was measured every 45 degrees with a tube micrometer at two axial locations,
as shown in Figure 3.2-5. These variations in the wall thickness were because the grinding of the
skirt was done by axial movement of the tool. Again, these variations were not considered to
compromise the integrity of the chamber. Two Pt-10 Rh trip rings were machined per drawing
1204495 by Johnson-Mattley. Four stainless steel flanges were machined per drawing 1204490
by Harris Precision Machine.

3.2.2 Chamber Assembly

Experiments were conducted to support the final assembly and joining of the
Ir-Re chamber. These experiments established that the two joints (the chamber-to-trip ring and
the trip ring-to-flange) could be made without voids or diffusion of the filler metal into the
machined parts. The experiments were conducted with small specimens which duplicated the
joint configuration and materials of the flight-type chambers. The experimental pieces were
assembled and stacked in the same furnace used in the joining of the final chamber. Furnace
conditions duplicated those used in the final production run. Visual inspection of the specimen
did not reveal any flaws or voids in the joint. The specimens were sectioned and examined under
Optical and Scanning Electron Microscopes (SEM). Figure 3.2-6 shows micrographs taken
during inspection of the samples under an optical microscope. These examinations established
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Figure 3.2-5. Wall Thickness Measurements on Ir-Re 14-Lbf Chamber S/N 2
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that the joints were continuous and free of voids or cracks, and that diffusion of the alloy into the
base metals was not significant.

Upon successful completion of the joining experiments, Ir-Re chamber S/N 2
was fabricated. Assembly, stacking and furnace operations established by the experiments were
repeated. The fabrication of the chamber appeared to be a complete success. Figure 3.2-7 shows
the chamber S/N 2 after joining and polishing.

The chamber was submitted for final inspection and assembly to the
valve/injector. Dimensional inspection confirmed that the flange and trip ring were concentric
and square with the throat to within 0.024 in., and to the exit dia. by 0.048 in. No discrepancies
were noted by a dye penetrant inspection of the inside surface of the nozzle, indicating the
iridium coating was free of cracks or voids downstream of the throat. Final assembly of the
chamber with the valve/injector went smoothly. The helium leak sensor employed for
acceptance of production engines was used to checkout the first engine assembly. No leakage
from the joints was detected. A very small leak (4.2 x 10-6 SCCS of Helium) was noted around
the gold seal and flange bolts. This small leak was not anticipated to be a problem, and could be
remedied if necessary with further polishing and flattening of the flange face. Figure 3.2-8
shows chamber S/N 2 after assembly with the injector and bipropellant valve. Figure 3.2-9
shows the fully assembled engine S/N 2 next to the C103 engineering development unit. Note
that C103 thrust chamber has an overall expansion ratio of 47:1, while the Ir-Re unit has an area
ratio of 75:1.

3.3 THRUSTER HOT FIRE TESTING

A total of 746 sec of firing was accomplished in tests up to 100 sec long, with a total
of 339 starts. Specific impulse at nominal conditions (220 psia inlet pressure) was 304.8 sec for
steady state operation and 282.6 for pulsed operation (0.1 sec on, 1.0 sec off). Replacing the
production Cb-silicide coated chamber with the Ir-Re chamber and BLT, with no other changes
has resulted in an increase of 20 sec. Chamber temperature at the nominal operating point was
3430°F; maximum chamber temperature for the test series was 3580°F (at MR = 1.89), giving a
margin of over 400°F on the demonstrated long life temperature for Ir-Re chambers of 4000°F.
Steady state thermal performance was satisfactory and agreed with the results of the thermal
analysis used in the design. The hardware performed satisfactorily, without damage or throat

erosion.
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Figure 3.2-7. 14 Ibf Ir-Re Chamber S/N 2 With Brazed Trip Ring and Flange
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The physical appearance of the hardware is shown in Figure 3.3-1 prior to test and in
Figure 3.3-2 after test where the posttest interior surface of the nozzle is compared to that of the
standard 14-1bf columbium unit. Although both units use precisely the same injector, the eight-
streak pattern typical of the production RCT does not occur on the Ir-Re thruster, presumably
because of the flow uniformity produced by the trip ring (BLT). The uniform, light circumferen-
tial pattern on the Ir-Re nozzle appears to be related to the thermal gradients which exist between
the throat and the exit.

Thruster dimensions, taken at several times throughout the program, are listed in
Figure 3.3-3. External dimensions are monitored primarily to determine if reaction is occurring
with the ambient test cell gases. There is no evidence of systematic change in external chamber
dimensions. The variations seen are due to the difficulty of making repeatable measurements of
the contoured surfaces of the thruster while it is mounted on the test stand. The internal
measurement of the nozzle throat shows a slight increase (less than 0.001 in.). The 0.324 in.
gage which partially inserted pretest could be inserted completely after Test-128. This could be
the result of removal of small asperities on the surface.

The results of throat I.D. and O.D. measurements taken throughout the testing are
shown in Figure 3.3-3A; chamber external dimensions taken during the testing are plotted in
Figure 3.3-3B. The changes in dimensions noted are within the accuracy of the measuring

techniques.

After assembly and leak test the S/N 2 engine was installed in the Bay A-1 altitude
test facility. Figure 3.3-4 is a schematic of the facility propellant system. Figure 3.3-5 shows the
14 Ibf Ir-Re thruster installed in the test facility. The planned test program is shown in Figure
3.3-6. The intent of the test program was to run the standard acceptance test series required of
the production 14 Ibf engine, followed by performance, thermal stability, and a portion of the
qualification test series as conducted for the production 14 1bf engine. This was to be followed
by a repeat acceptance test to demonstrate that no degradation of the engine had occurred.
However, actual testing was reduced significantly to assure that funds were available for

vibration acceptance testing of the engine assembly (Section 3.4).

A total of 36 firings were made with an accumulated firing time of 746 sec in a total
of 349 starts, comprising checkout, acceptance testing and a portion of the performance mapping

and qualification series.
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Figure 3.3-1.

(C1190 5597)

14# Ir-Re S/N 2 Nozzle Exit, Prior to Test
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3.3.1 Test Installation and Instrumentation

Installation of the engine was accomplished in the same facility as used for
acceptance testing of the production 14 1bf Cb thruster with modifications special to the Ir-Re
program. The chamber was instrumented with type K thermocouples as shown in Figure 3.3-7.
In addition, chamber temperature was monitored with a Ircon two-color pyrometer, and a
Thermovision IR thermal mapping system.

Plume optical absorption and emission measurements were made using the
ESMS system shown schematically in Figure 3.3-8. The water-cooled detector head at the
engine exhaust is shown in Figure 3.3-9.

To protect the exterior of the Ir-Re chamber from oxidation by the residual
gas in the test cell, a shroud directs a small flow of hydrogen over the chamber. The details of
this shroud are shown in Figure 3.3-10.

The engine was operated without a diffuser to eliminate the influence that
this would have on pulse performance measurements during start up and unload.

The inlet operating pressure map for the engine is shown in Figure 3.3-11.
The data measurements made during the testing are identified in Figure 3.3-12. The test data
tapes are identified as 5804-A01-0A-[Run Number] and are archived.

332 TestResults

The engine operating conditions and measured performance are shown in

Figure 3.3-13. The initial range of test conditions were those required by the acceptance test
matrix, Figure 3.3-14. These tests covered the inlet pressure range from 145 psia to 370 psia for

steady state durations of 5 and 100 sec. Pulse trains of 80 each 0.1 sec on 1.0 sec off were also
" run over the inlet pressure range. Additional tests of 10, 15, and 20 sec duration were conducted
over a wider inlet pressure range, approx 150 psia to 400 psia. The full map of operating condi-
tions is shown in Figure 3.3-15. The map covers the test range of MR from 1.4 to 1.89 and the
vacuum thrust range from 11.3 to 22.0 Ibf.

Performance Data

Measured vacuum specific impulse for the engine in steady state operation is
shown in Figure 3.3-16 as a function of mixture ratio over the full test range. The cluster of data
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points at nominal inlet conditions is shown again on a highly expanded scale in Figure 3.3-17.
The average specific impulse at nominal conditions is 304.9 sec with a 3¢ deviation of 30.45 sec.

Pulse performance for the engine is shown in Figure 3.3-18 as a function of
mixture ratio for tests -108, -109, and -127, which were 80-pulse trains, 0.1 sec on/1.0 sec off.
The I for pulse test -136, 36 pulses of from 0.1 to 1.0 sec width is also shown. The pulse trains
used in these tests is shown in Figure 3.3-18A. The I delivered for pulsed operation is above
that required for the production engine in steady state firing. Impulse bit (I bit) delivered for the
100 ms electrical pulse widths of test-108 is shown in Figure 3.3-18B. The average I-bitis 1.18
Ibf-sec £ 0.15 1bf sec over the 80 pulse train.

Specific impulse is shown as a function of chamber pressure in Figure 3.3-19
for the steady-state tests. It should be noted that the small diameter line which connected the
pressure transducer to the engine was eventually partially blocked, possible from excess braze at
a coupling in the line. It therefore gave slow response with delays of seconds before finally
reaching steady state. At test-126 the line plugged completely. For the remainder of the tests
chamber pressure is calculated from the measured propellant flows, the inlet pressures, and the
previously measured engine Kw,. The independent Pc values provided from the oxidizer and
fuel flows provided a check of consistency.

Thermal Data

Chamber external wall temperature at a point in the contraction region
upstream of the throat measured with a two-color radiation pyrometer set for grey-body emission
is shown in Figure 3.3-20 as a function of mixture ratio. There is an increase of 300°F in wall
temperature over the full MR range, from 3280°F at MR = 1.38 to 3580°F at MR = 1.89. Note
that there is no clear correlation of wall temperature with chamber pressure for this engine. Data
for tests through -105 are not included since the pyrometer was aimed at a cooler location,
downstream of the throat region. Short duration tests (< 5 sec) have been removed from the data
set because the chamber has not reached steady state temperature. This occurs at about 10 sec, as
shown in Figure 3.3-21, where temperature is plotted as a function of time for test -121.

Temperature data for test -112, a 15 sec firing, are shown in Figure 3.3-21A.
The temperatures reach maximum values at about 5 seconds after shutdown, due to heat
soakback, and then fall off to less than 300°F at the end of the 100 sec coast. Temperature data
for five locations on the engine, as defined in Figure 3.3-7, are plotted in Figure 3.3-22 for Test
-121, a 100 sec firing at nominal conditions. TF-2 located at the flange reaches a high of 160°F
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144# Ir-Re THRUSTER TEMPERATURE VS TIME
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Figure 3.3-21A.  14# Ir-Re Thruster Temperature vs Time
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at 95 sec, then climbs to a maximum of 255°F at 17 sec of coast, and cools to 142°F) in 100 sec
of coast. TC2, located on the exterior of the trip ring, halfway between the forward flange and
the Pt-to-Retjoint, reaches a maximum of 323°F at 62 sec into the firing. It peaks at 530° after 4
sec of soakback during coast, and then falls to 155 °F in 100 sec of coast. The temperature of the
Pt-to-Re joint, TC-4, reaches its maximum steady state temperature of 522°F 46 sec into the
firing. At shutdown, this temperature rises to 632°F in 3.5 sec of coast, and then falls to 162°F in
100 sec of coast.

The temperature of the stainless flange-to-Pt joint, TCF-2, reaches a
maximum valve of 290°F at 68 sec into the firing. It climbs to a post firing maximum of 457°F
in 5.6 sec and then falls to 156°F in 100 sec. The temperature of the Ir-Re nozzle at the exit,
TN-1 rises to a maximum of 1357°F at 70 sec into the firing. After shutdown, the nozzle exit
temperature falls to 277°F in 100 sec. The steady state firing measured temperatures are
compared to the results of the design thermal analysis (Appendix B) in Figure 3.3-23. the
agreement with the analysis in good; all temperatures are well below the long life allowable
temperature for the engine.

The measured performance at nominal operating conditions of the S/N 2
thruster is 304 * 1 sec. This agrees well with the predicted value at a C* efficiency of 98% and
represents a 20 sec improvement over the production design. However, in the last group of
steady state tests, repeat points fall about 2-3 sec below this value. Posttest leak check of the
chamber showed leakage past the gold seal between the chamber flange and the injector. In the
standard 14 1bf thrust columbium chamber thruster, this seal is made using 6 bolts with stacks of
belleville spring washers. These accommodate the difference in thermal expansion between the
stainless bolts and the columbium chamber flange. They are not needed in the Ir-Re design
because the flange and bolts are stainless. However, they were retained to provide maximum
similarity between the two thrusters. Posttest examination shows that the spring washers
interfered slightly with the chamber assembly. It is postulated that this resulted in design torque
being achieved without obtaining full compression in the washer stack. It is postulated that the
marginal preload was relieved during thermal cycle testing. Figure 3.3-24 shows the washer
stacks after testing.

The last two tests were pulse series, as deﬁned in Figure 3.3-18A, which
were part of the qualification test series. The first test, -135 was terminated at 32 pulses when

TCF-2 reached its preset kill temperature of S00°F. Since this is the stainless-to-Pt joint,
temperatures of more than twice this value could be tolerated, although with some concern for

the subsequent overheating of the injector which could occur. The temperature limit was

RPT/G0105.117/24 91 February 25,1993
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Figure 3.3-24. 14 IbF Ir-Re Thruster Washer Stacks After Testing
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increased to 750°F and the firing was repeated as test -136. This test ran for 36 pulses. The kill
computer indicated that TCF-2 had exceeded the 750°F limit; engineering unit data summaries
available on line had an edit ratio of 20 (about every 40th measured data scan). This listing
showed a maximum TCF-2 of 524°F; however because of the lateness of the hour it was decided
to examine the data more thoroughly before pushing on with testing and possibly damaging the
engine. An unedited (every other scan) listing printed the next day showed clearly that the
highest temperature reached by TCF-2 was 530°F. Apparently the shutdown computer, which
operates at a higher sampling rate than the data computer, had responded to a noise spike. At this
point, the hot fire testing was deferred to permit vibration test of the engine.

Hot fire tests to date have demonstrated front end thermal management at
steady state and 10% duty cycles (0.1 sec on, 1.0 sec off) as required by acceptance tests of the
current 14-1bf engine. Since a pulse mode thermal analysis has not been conducted on the Ir-Re
14-1bf thruster and hot restart with predicted MMH decomposition as discussed in Appendix B
has not been demonstrated, pulse mode thermal management at higher duty cycles remains to be
demonstrated. Such tests are contained in the qualification tests, which remain to be done.

Exhaust Plume Measurements

Optical measurements were made on the exhaust plume to detect the presence
of thenium. Absorption of a 346 nm reference signal modulated at 1.1 kHz is a measure of the
rhenium concentration. Figure 3.3-25 is typical of the optical measurement obtained on a normal
test, Run -121. The absorption shows just noise (signal above zero level is absorption). The
total radiation signal (350 nm) shows the relatively gradual hardware heat up curve. Variations
which occur in the total radiation throughout the test correlate with small changes in nozzle
temperature, caused by small fluctuations in MR due to changes in regulator set points. The T4
effect on radiation makes these small changes measurable.

One test in this series, -106, showed possible indication of Re in the exhaust.
In this test the PDFM’s bottomed and the engine went off MR on the high side, with a gradual
decay in thrust. The ESMS measurements for this test are shown in Figure 3.3-26. No evidence
of damage was found in posttest inspection. No other tests showed the absorption, which is
consistent with appearance of the hardware at the end of the test.

Total emission measurements at 350 nm taken during the pulse testing
showed an initial rise, which was expected and can be attributed to nozzle grey body emission.
However, after reaching a maximum, the emission fell throughout the pulse test. Figure 3.3-27

RPT/GO0105.117/26 94 February 25,1993
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shows the total emission for pulse test -136; the variations in emission correspond to the
individual pulses, which start out at one second duration and then reduce in steps to 0.1 sec.
Nozzle temperature calculated from these data are shown in Figure 3.3-28, along with measured
nozzle temperature. The agreement is good for the first 10 seconds; after this measured nozzle
temperature remains constant at about 950°F while emission calculated temperature steadily
drops to low values throughout. Why this occurs on the pulse test is not clear; it could represent
absorption by exhaust species generated at each shutdown which is increasing as cell pressure
increases throughout the test.

3.4 VIBRATION ACCEPTANCE TEST

The objective of the vibration testing was to determine if the Ir-Re chamber structure
could withstand the random vibration levels to which the flight 14 1bf Cb engine is exposed for
production acceptance testing. The engine successfully passed the acceptance test vibration
levels without damage. Using strain measurements obtained in these tests, the margin of safety
for a qualification level test (+3 db) was calculated (Appendix D). Results showed positive
margins for all critical areas:

Location Margin of Safety
Chamber Throat 0.65
Chamber Root 2.78
Trip Ring Root 2.38

Preparation

After hot fire testing the engine was disassembled and inspected. Figure 3.4-1 shows
the engine prior to disassembly; Figure 3.4-2 is a detail of the chamber and valve.

After disassembly, the engine was reassembled with a new seal, and standard lock
washers. The Bellville spring washers were not used since they serve no purpose on the Ir-Re
chamber while increasing the thermal load into the spacecraft.

The production Cb 144# thruster is acceptance tested in the Reaction Control Thruster
Module (RCTM). The RCTM consists of a pair of thrusters, instrumentation, thermal shields
and their support structure, as installed in the spacecraft. The Ir-Re 14# thruster was exposed to
the same vibration acceptance testing with the addition of diagnostic strain gages. The engine is
shown in Figlire 3.4-3 with the module structure, and a Cb engine which was used to provide
proper mass distribution in the RCTM.

RPT/G0105.117 a8 February 11, 1993
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The planning for the vibration acceptance testing is discussed in Appendix C. The
specification requirements for the vibration power levels are shown in Figure 3.4-4. The tests are
conducted in three different groups, one each for the X, Y, and Z axis.

Facility and Instrumentation

The testing requires the use of two different vibration facilities, a vertical shaker for
the X-axis tests and a horizontal shaker for the Y- and Z-axis tests. These are driven by a control
system which monitors the acceleration levels to which the RCTM mounting fixture is exposed.
For these tests, additional accelerometers were mounted on the engine. The overall setup for
Z-axis vibration of the Ir-Re chamber in the RCTM is shown in Figure 3.4-5. Figure 3.4-6is a
close up which shows the RCTM mounted on the Z-axis test fixture, which is supported
vertically by a slip table and coupled to the output of the acoustic driver. The lower engine in the
module is the 14# Ir-Re thruster; accelerometers at the nozzle exit and strain gages at the throat
are visible. Figure 3.4-7 is a closeup of the RCTM with a side panel removed showing the three
accelerometers mounted on the valve. As discussed in Appendix D, strain gages were mounted
on the engine at the throat to measure strain during testing. Figure 3.4-8 shows these gages.
Because of the uncertainty in yield strength and fatigue life properties for Re, there was some
concern that the chamber might bend at the throat at the acceptance test vibration levels.
Therefore, dial indicators were set up to measure nozzle deflection, and the tests were run at
progressively increasing acceleration levels, starting down 12 db and increasing in 3 db steps to
the 0 db down acceptance test level (see Figure 3.4-9 for the relation between db and power).

Vibration Testing

Spectral power density curves such as shown in Figure 3.4-10 were obtained for each
of the 4 nozzle strain gages for each test series. No unusual responses were noted. Deflection
measurements were made after each test; no deflection was measured. Power spectral density
plots were made for the control accelerometer and the 5 engine-mounted accelerometers for each
axis of excitation. Figure 3.4-11 is an example of the response of the control accelerometer, for
the X-axis tests. Figure 3.4-12 shows nozzle “Y” accelerometer spectral power density for the
Y-axis acceleration test. A complete set of O db strain and accelerometer data are presented and
discussed in Appendix D, where the margin of safety for the qualification (+3 db) random
vibration tests is derived.

103

RPT/GO105.117 February 11, 1993



Acceleration Spectral Density, G Hz
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The Ir-Re chamber technology has been demonstrated to be an advanced performance
solution to high performance radiation cooled chambers in the 15 Ibf class relative to
conventional silicide-coated Cb chambers. This technology has been demonstrated to provide a
7% increase in Is over conventional thrusters with no other change in the engine system, It may
be possible to obtain somewhat higher performance for an engine using an injector specifically
designed for this application.

Because of the relatively limited test duration accumulated to date, little direct data exist for
engine life or pulse testing at the 14 1bf level. However, the Ir-Re technology has demonstrated
long life at 5 1bf (>14 hr) and 100 1bf (>5 hr).

Uncertainties in material properties produced dynamic analyses which predicted failure in
vibration acceptance tests. However, the engine not only passed acceptance test vibration levels
but has been shown to have positive margin for the qualification level.

The thermal design of the engine has been shown to be satisfactory during steady state
firing. Front end temperatures are at design levels and provide ample margin for injector, valve
and spacecraft. Chamber temperatures are ca. S00°F below the demonstrated long life limit of
4000°F.

The following activities should be pursued to further demonstrate this technology

. The second set of 14 1bf Ir-Re hardware should be assembled and subjected to hot fire
and vibration tests. This will provide added confidence in the design approach.

. The engine should be tested for long duration (>100 sec) to provide unqualified
demonstration of steady state thermal management.

. The engine should be subjected to extensive pulse tests over the full range of duty
cycle to assure that no possibility of thermal pump up exists.

. The engine should be tested for thermal characteristics with a heat shield in place.

. The operation of this class of engine, with appropriate modifications, or other
propellants such as Oo/MMH and Oy/H; should be explored.

RPT/G0105.117/2% 1 1 3 February 25,1993
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TO: M. L. Gage 17 April 1990

— AJF:gg:9981:4394
FROM: A. J. Farahyar

éi SUBJECT: 14-1b Rhenium Nozzle Vibration Analyses

o COPIES TO: L. Schoenman, S. D. Rosenberg, J.W. Salmon,

D 9981 File :
ENCLOSURE: (1) 14-1b Rhenium Nozzle Vibration Analyses

Linear analyses of the 14-1b nozzle with different throat
Ca thicknesses and lengths, and neck with and without struts,
. suggest that it will yield at the throat or neck if it is
= subjected to the vibration of the shuttle launch dispenser. These
- analyses assumed that the nozzle would be held cantilevered from
= the injector end. Using the shuttle launch dispenser environment
= as input to the nozzle and the fixed boundary condition probably
will lead to a conservative result because it fails to account
for the load transmissibility of the structure between the
shuttle launch dispenser and the nozzle.

g
\Im;m IR

To assess the potential of the failure after the yielding,
one of the following approaches is recommended:

0y
il i

0

(1) Dynamic plasticity should be performed based on the
appropriate material properties for cyclic plasticity to obtain
the strain state in the plastic zone. Then appropriate material
properties are required to assess the stability of the above
plastic zone based on strength and fatigue criteria. Also the
fracture potential of the bi-material interface between the
rhenium and platinum should be estimated using computational
fracture mechanics. In the analysis approach, the fracture energy
release rate in these regions of stress and strain singularity is
calculated, then compared to the critical energy release rate.

The comparison will provide the corresponding factor of safety.

LY

o

iﬂ
I

{

(2) Random vibration testing of the nozzle should be
performed after hot fire testing with appropriate fixture design
which represents the appropriate mass and stiffness of the
structure between the shuttle launch dispenser and the nozzle.

1

The enclosed report presents the analysis details and
results. '

g ot

A. J. Farahyar
System Design Analysis
Engineering Analysis Department

Langhis ‘Manager
stem gn Analysis
Engineéfing Analysis Department
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INTRODUCTION

The 14-pound nozzle is subjected to two different vibration environments : 1) When the
engine is being transported to outer space, and 2) When the engine is firing. Since the
former environment is usually much more severe than latter, this analysis only considers
the first case. The purpose of this analysis is to assess the structural integrig of the
nozzle under launch dispenser random vibration environment and modify the design to
reduce the stresses in the critical regions and thus ensure the survival of the nozzle.

PROCEDURE

The ANSYS finite element model of the nozzle was made using axisymmetric solid
elements with antisymmetric harmonic loads. Figure 1 shows the finite element model of
nozzle. To obtain the stress gradient around the throat, finer grids are used in this
region. The struts were modeled using two-dimensional beam elements with an
equivalent axisymmetric area for antisymmetric loading. So the total area of the struts is
divided by  rather than by 2x to obtain stiffness per radian as discussed in Appendix A.

The nozzle is made of rhenium using the following room temperature material
properties:

Modulus of elasticity 65,000,000 psi
Density 1.966e-3 1b-s"2/in"4
Poisson’s ratio 0.26

Yield strength 55,000 psi

The neck is made of platinum using the following room temperature material
properties:

Modulus of elasticity - 21,000,000 psi

Density 2.006e-3 1b-s"2/in"4
Poisson’s ratio 0.39
Yield strength 15,000 psi

All nodes with translation degrees-of-freedom are chosen as master-degrees- of-freedom
to obtain accurate lateral bending modes. Modal analysis was pe ormed using the
Householder procedure, and modes with significant modal coefficients greater than
0.001 were expanded. The results of the mod analysis were reviewed to understand the
nature and spread of modes over frequency and to elp design modification if required.
The first bending mode has a frequency of about 300 Hz to 420 Hz depending on the
throat length and thickness, and a neck with and without struts. The second bending
mode is above 1500 Hz. The modes above the first bendin mode do not contribute to
the dynamic response since the environment is specified only up to 1500 Hz. The
accuracy of the modes depends on the finite element idealization based on the number
of elements and element types and master-degrees-of-freedom that should be used to
the represent the half-m wave motion accurately. Since there is sufficient master-
degrees-of-freedom and elements for the first bending mode, therefore there is sufficient

modal accuracy and the model is adequate for response analysis.

Random vibration analysis was performed for lateral axis usin modal analysis results.
The random vibration spectrum is presented in figure 2. ANS S modal analysis has a

A-4



shock spectrum option that was used to perform random vibration response analysis.
This option was chosen since the random vibration response is dominated by the first
bending mode. A viscous damping ratio of 3 percent was used. Structural damping is due
to friction at the interface between elements of the structural system and internal
friction within the material. The friction within the material is small in the elastic zone
and is increasing with plasticity of materials due to higher energy dissipation. Since the
actual damping could be from 1% to 5%, using 3% damping is reasonable.

Table 1 presents the stresses equivalent to Von Mises yield criterion at the throat and
the neck sections. These stresses are calculated using 30 level. Since the stress state
exceeds yielding, the extreme value theory of lprobabili is not used here due to
limitation of this theory for the linear system. It should mentioned that there are
aﬁproximated perturbation methods a icable to non-linear random vibration system
like statistical linearization technique. These methods are not used since it is beyond the

scope of the budget allocation for this work. -
Several modifications are considered here to reduce the stresses, which are:

(1) Increasing the throat length from 1.9 inch to 3.3 inch reduces the natural
frequency and stiffness which results in stress reduction.

(2)  Using the struts in the neck section reduce the effective length. This would result
in increasing the natural frequency and increase the stress in the throat section
slightly, but reduces stresses in neck region due to increased area. Also, using
struts increase the confinement that results in undesirable reduction of fracture
material plgrcl)perties for the bi-material interface between the rhenium and
platinum. This adverse effect can be investigated. ,

(3) Increasing the throat thickness from 0.028 inch to 0.040 results in stress
reduction in the throat section.

CONCLUSION AND RECOMMENDATION

The analyses were performed using two-dimensional axisymmetric elements with

antisymmetric harmonic loads. These elements provide accurate response calculations

for bending modes, but are incapable of predicting responses for the bell modes. The

more accurate modeling which would use shell elements was abandoned due to lack of

resources. This would probably not introduce significant errors in maximum stress

f)alﬁula:)t:'lons in the neck and the throat regions due to the high frequency content of the
ell modes.

These analyses assumed that the nozzle would be held cantilevered from the injector
end. Using the shuttle launch dispenser environment as input to the nozzle and using
fixed boundary condition probably will lead to a conservative result because it fails to
account for the load transmissibility of the structure between the shuttle launch

dispenser and the nozzle.

To assess the potential of the failure after the yielding, one of the following approaches
is recommended:
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(1)

2

Dynamic plasticity analysis should be performed based on the appropriate
material properties for cyclic plasticity to obtain the strain state in the plastic
zone. Then appropriate material properties are required to assess the stability of
the above plastic zone based on strength and fatigue criteria. Also the fracture
Botential of the bi-material interface between the rhenium and platinum should

e estimated using computational fracture mechanics. In the analysis approach,
the fracture energy release rate in these regions of stress and strain singu arity is
calculated, then compared to the critical energy release rate. The comparison will

provide the corresponding factor of safety.

Random vibration testing of the nozzle should be performed after hot fire testing
with appropriate fixture design which represents the appropriate mass and
stiffness of the structure between the shuttle launch dispenser and the nozzle.



INDUCED STRESSES EQUIVALENT TO VON MISES YIELD

Description

1.9 inch throat length with
struts and 0.028 inch
throat thickness

1.9 inch throat length
without struts and 0.028
inch throat thickness

3.3 inch throat length with
struts and 0.028 inch
throat thickness

3.3 inch throat length with
struts and 0.04 inch throat
thickness

CRITERION FOR 14-LB NOZZLE
Maximum Stresses Maximum Stresses
Eqivalent to Equivalent to
Von Mises Yield Von Mises Yield
Criterion at Criterion at
Throat Section Front End
_(ksi) (ksi)
76.8 (55.0)* 8.4 (30.0)**
72.9 (55.0) 24.6 (30.0)
74.4 (55.0) 16.5 (30.0)

66.0 (55.0) 16.0 (30.0)

The number in parenthesis is corresponding to yield strength.

*CVD Rhenium
**Pt-10 Rh

Maximum stresses shown in the table are 3-sigma values.

RPT/D020139-T
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ACCELERATION SPECTRAL DENSITY. (Gsz)

Spec No. 8508Q98A

i 7|° 1100
i 04—k QUALIFICATION J
0.1 ACCEPTANCE-
/ \
/ v \N__o.1250
.10 }———— REQUIREMENTS \ —_—
L / \
: ! DURATION OVERALL\\_O.OSZS
N ! QUALIFICATION 180 SEC 25g rms
- y ACCEPTANCE 60 SEC 17.7g rms
- /
GENERAL:
- 20 TO 70 Hz +9 db/octave
20 70 TO 1100 Hz flat at max level
l 1100 TO 2000 Hz -6 db/octave
o.otp——1" / _ S
t !
- !
—-0.005—'
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10 . 100 1000
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Figure 2. Random Vibration -
shuttle Launch Dispenser
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APPENDIX A
NONAXISYMMETRIC LOADS

The load applied to geometrically axisymmetric structures will not necessarily be
distributed in an axisymmetric form. In dealing with base acceleration, the inertia forces
arising from acceleration will comprise non-axisymmetric loading on cylindrical
structures like the nozzle. In cases where the distributed load varies only with
circumferential coordinate (8) and can be represented by a number of terms of a series

expansion:
T = traction force = TGt + Z‘T;/&:MG

where each term of each series is called a harmonic. In order to impose lateral
acceleration on a cylindrical structure, the traction force, T, can be broken down into its
radial and circumferential direction, as shown in the following figures:

P T —_—

&7’ = e aE B

, ~ ‘_ —tpe g

~ = : — -
> _t ~ o= = =

P =00 < 2 -~ —~

=, % ~. 7 2. -

A Ly — _: . S
~— L i \ﬁ:—‘ —t
Ow:‘ [TV - '
T=T %6 Ta-To %00 foer  Accetemanisy
20 M

TETALC Fo2Ce = TCs
) J Lﬁ\%@bzéb) +S ‘rek%%wﬂs)e)‘

<=
1T
= 07, + 07T

7; and Te are the maximum accumulation per radian at zero and 90 degrees,
respectively. For modal spectrum analysis, the & and ® direction should be analyzed
for two separate runs. The results of each run should be combined using Post 27 in

ANSYS.
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March 5, 1990
TO : Mark L. Gage

FROM ¢ Felix. F. Chen
SUBJECT: Thermal Analysis Results of 14 1bF Rhenium Chamber
COPIES TO: S. D. Rosenberg (W/0 Enclosure), L. Schoenman

ENCLOSURE: (1) Computer output of 0.5 in. BLT, Steady State
(2) Computer output of 0.75 in. BLT, Steady State
(with 760 R boundary condition)
(3) Computer output of 0.75 in BLT, Steady State
(with 960 R boundary condition)
(4) Computer output of 0.75 in BLT, Transient
Up to 30 Sec (with 760 R boundary condition)

SUMMARY

This report summarizes the thermal analysis results of
the 14 1bF rhenium chamber design. Two different boundary
layer trip (BLT) rings (one is 0.5in long and the other is
0.75in long) are used in the analysis. The predicted
maximum wall temperature of the rhenium chamber is 3977 R
(3517 F) at approximately 0.15 in. upstream of the throat.
At the bond joint between the rhenium chamber and the
platinum BLT, the maximum interface temperature with a 0.5in
long BLT is 1482 R when a 760 R (300 F) constant temperature
condition is applied to the surface of the BLT. The maximum
interface temperature decreases to 1084 R when the length
of BLT increases to 0.75 in with the same boundary
conditions. During the shutdown transient heat soak back,
the maximum interface temperature with a 0.75 in. BLT
increases from 1084 R to 1170 R which is still well below
the design temperature limit of 1460 R. At the end of 30 sec
shut down transient, the average temperature increases for
the platinum BLT and stainless steel flange are 270 R and .
200 R, respectively.

If the platinum BLT surface temperature due to the effect
of fuel film cooling increases from 300 F to 500 F, the
maximum temperature at the rhenium/platinum interface
temperature with a 0.75 in long BLT will be only 1256 R for
steady state hot fire condition. Therefore, the 0.75 in BLT
is recommended for the 14 1bF rhenium chamber testing.

BOUNDARY CONDITIONS

The results of fuel film cooling analysis for the
existing 14 1bF columbium chamber design were used to
calculate the gas-side boundary conditions. Since both the
thrust (14 1bF) and chamber pressure (100 psia) are low, the
reverse transition from turbulent flow to laminar flow in
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throat region is anticipated. Table 1 lists the gas-side
convective heat transfer coefficients and the flow
relaminarization factor at six different axial locations.
The predicted maximum heat flux location is approximately
0.15 in. upstream of the throat.

The results of fuel film cooling analysis indicate that
the fuel will remain in liquid film (approximately 295 F or
less) from the injection point to an axial distance of
approximately 0.82 in. from the injector. Since the length
of BLT in this analysis is less than 0.82 in., a 300 F
constant temperature boundary condition has been applied to
the surface of both BLTs (0.5 and 0.75 in. long). If the
length of BLT exceeds 0.82 in., the adiabatic wall
temperature increases significantly. The 300 F surface
temperature boundary condition cannot be applied any more.

Beyond the tip of BLT, the flow is assumed to be fully
mixed, i.e. the fuel film cooling effectiveness is assumed
to be very small. The fully combusted gas temperature of
5461 R is used as the hot gas temperature for the barrel

section.

Since radiation is the only cooling mechanism of the
present 14 1bF rhenium chamber design, radiation loss from
the outer surface to space (0 R) is incorporated in the
gﬁiiiﬁigjﬂggziﬁ§€‘€he radiative power is proportionally to
the fourth power of the temperature, the difference between
the radiation loss from rhenium chamber wall to space with 0
R and to ambient with 530 R is negligible. This analysis
results can be applied to the sea level test too. The
emissivity of the rhenium surface is assumed to be 0.95,
whereas the emissivity of both platinum and stainless steel
is assumed to be 0.5. The surface between the steel flange
and the injector body is assumed to be adiabatic which is
conservative for the heat soak back evaluation of the steel

flange.

A plot showing the geometry used in the analysis as well
as different material regions of the model is shown in Fig.
1. In this figure, material 1 is rhenium, 2 is platinum, and
3 is stainless steel. The total chamber length (L') is 2.12
in. The operating conditions and geometric variables used in
this analysis are listed in Table 2.

DISCUSSIONS OF RESULTS

The steady state temperature distributions for the 0.5
in. BLT and 0.75 in. BLT are shown in Figs. 2 and 3,
respectively. The length of BLT does not have any impact on
the throat temperature since the combusted gas is assumed to
be fully mixed beyond the tip of BLT. The predicted maximum
wall temperature is 3977 R which is very close to the
desired operating temperature of 3960 R. The maximum
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temperature in the barrel section of the rhenium chamber
design is 3650 R for both cases.

A major benefit of using the longer BLT is the large
temperature reduction at the interface of rhenium chamber
and platinum BLT. The temperature at this interface is
considered critical for the rhenium chamber design. The
maximum interface temperature with the 0.5 in. BLT is 1482 R
which is slightly higher than the design temperature limit
of 1460 R. When the length of BLT increases to 0.75 in., the
maximum interface temperature decreases to 1084 R which
gives a significant temperature margin at the bond joint.
The other benefit of using the longer BLT is the lower
rhenium wall temperature at locations near the bond joint. A
lower wall temperature gives a lower heat flow rate during
the shut down heat soak transient and a lower temperature
for both platinum BLT and stainless steel flange.

In order to investigate the effects of different platinum
BLT surface temperature on the temperature distribution of
the rhenium chamber design especially at the bond joint
between the rhenium chamber and the platinum BLT, the 0.75
in. BLT case was re~ran with a 500 F instead of a 300 F
constant temperature condition at the surface of platinum
BLT. The result of steady state temperature distribution is
shown in Fig. 4. The maximum interface temperature at the
rhenium chamber and the platinum BLT increases from 1084 R
to 1256 R which is still well below the design temperature
limit of 1460 R. The average temperature increase for the
barrel section of the rhenium chamber ranges from 10 R to 50
R due to the high conduction resistance associated with the
thin wall of the rhenium chamber. Table 3 summarizes the
results of steady state temperature at various critical
locations for all three cases.

It should be noted that the effect of flow re-attachment
at the rhenium chamber wall temperature due to the platinum
trip ring is not included in this analysis. The gas-side
convective heat transfer coefficient may increase up to 35%
with the flow re-attachment. The impact on the wall
temperature increase is approximately 200 R. However, as
indicated earlier, an assumption of fully mixed combustion
gas is used in this analysis, in reality, hot gas may not be
fully mixed especially in the barrel section. Therefore, the
net effect on the wall temperature increase should be small.

- Since the result with a 0.75 in long BLT and a 300 F
constant BLT surface temperature is the most realistic and
the best representative case, the shut down transient heat
soak back is performed for this case. Once the engine starts
to shut down, there is no more heat addition from the hot-
gas to the chamber. Therefore, the rhenium wall temperature
should decrease monotonically due to the radiation loss.
However, the temperature of both platinum BLT and steel
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flange will increase significantly since the 300 F heat sink
effect due to the fuel film cooling is gone. The heat soak
back from the high temperature rhenium chamber to both
platinum BLT and steel flange will be significant.

Heat soak back during the shut down transient is critical
for the rhenium chamber design since the rhenium wall
temperature is well above 3500 R at steady state firing. The
major concerns are the bond line temperature between the
rhenium chamber and the platinum BLT, the platinum BLT
surface temperature, and the steel flange temperature. The
bond line temperature should remain below the 1460 R design
temperature limit to ensure a good bonding exists between
the rhenium chamber and the platinum BLT. The platinum BLT
surface temperature is critical for the engine restart.
Generally, the platinum BLT surface temperature should be
kept below 910 R (450 F) to prevent the auto-decomposition
of MMH fuel. :

Figure 5 shows the transient temperature variations of
three critical locations: rhenium/platinum interface,
platinum surface, and steel flange. At the rhenium/platinum
interface, the temperature reaches a peak value of 1170 R at
approximately 2.0 sec into the shut down transient. Then,
the interface temperature starts to decrease monotonically.
At the platinum BLT surface, the peak temperature will be
reached approximately 4-5 sec into the shut down transient.
The maximum temperature of the platinum BLT surface is 1030
R which is approximately 120 R higher than the auto-
decomposition temperature of the MMH fuel. At the end of 30
sec shut down transient, the temperature of platinum BLT
surface is 983 R which is still higher than 910 R.
Therefore, the engine must wait at least 30 to 60 sec before
it can be re-started to avoid the auto-decompostion of the
MMH fuel.

The steel flange temperature increases monotonically
during the 30 sec shut down transient. At the end of 30 sec,
the flange temperature is 956 R which is a 200 R increase
over the 30 sec shut down transient. Since the flange wall
is assumed to adiabatic, the actual flange temperature
should be lower due to the conduction to the injector body.

The transient temperature variations at three different
locations of the rhenium chamber (maximum temperature
location, mid-point of the barrel, and forward end of the
barrel without the cover of platinum BLT) are shown in Figqg.
6. The temperature variation at the rhenium/platinum
interface is also shown in this figure for comparison. The
rhenium wall temperature drops significantly during the
initial 10 sec of the shut down transient. After 10 sec into
the shut down transient, the maximum rhenium wall
temperature decreases from 3977 R to 1800 R. A temperature
reduction of 2200 R in 10 sec!
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Figure 7 illustrates the transient temperature variations
at different locations of the rhenium/platinum interface,
the maximum temperature variation of the platinum surface,
and the steel flange temperature. At the end of 30 sec shut
down transient, the maximum temperature difference is 250 R.

A snap shot of temperature distribution in color at five
different time intervals during the shut down transient is
not included in this memo. Those figures are available for
viewing or reproduction.

CONCLUSIONS AND RECOMMENDATIONS

Thermal analysis results of the 14 1bF rhenium chamber
indicate that the predicted maximum rhenium wall temperature
is 3977 R and the average barrel temperature is 3650 R. The
predicted maximum interface temperature of the rhenium
chamber and the platinum BLT is only 1084 R with a 0.75 in.
long BLT and a 300 F constant BLT surface temperature
condition. If the length of BLT decrease, the interface
temperature increases, the operational margin for the bond
joint becomes smaller. However, if the length of BLT exceeds
0.82 in., the effectiveness of fuel film cooling at the end
of BLT is small, the tip of BLT has a high possibility of
melting. Therefore the 0.75 in. long BLT is recommended for
the future tests.

The results of a 30 sec shut down transient indicate that
the rhenium/platinum interface has plenty of temperature
margin with the 0.75 in. long BLT. However, the platinum BLT
surface temperature will exceed the auto-decomposition
temperature of MMH fuel. The BLT surface temperature and the
steel flange temperature are recommended to closely
monitored during the shut down transient.

U

Felix F. Chen
Research and Technology
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JABLE 3
STEADY STATE TEMPERATURE AT VARIOUS CRITICAL LOCATIONS

Length of BLT {in.) 0.75 0.75 0.5 - |
|
Pt. BLT Surface Temp ( R) 960 ' 760 760 —
Throat Wall Temp ( R) 3944 3944 3944
Max Wall Temp ( R) 3977 3977 3977
Max Barrel Temp ( R) 3650 3650 3650 )
Mid-Point Barrel Temp ( R) 3608 3560 3565 =
Max Temp at Re/Pt - |
Interface ( R) 1256 1084 1482
Forward End of Re/Pt a
Interface Temp ( R) 1034 841 940 =
Mid-Point of Pt BLT (R) 970 771 785 -
Steel Flange Temp ( R) 956 758 758 _
%
N
B-9
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TO ¢ Mark L. Gage March 20, 1990
FROM : Felix. F. Chen

SUBJECT: Thermal Stress Analysis Results of 14 1bF Rhenium
Chamber

COPIES TO: S. D. Rosenberg (W/0 Encloéure), L. Schoenman

REFERENCE: (1) Memo to M. L. Gage from F. F. Chen, Dated
March 5, 1990

ENCLOSURE: (1) Computer output of 0.75 in. BLT steady state
thermal stress analysis results

SUMMARY

This memo summarizes the continuation effort of Ref.
(1) to include the recent design changes of the 14 1bF
rhenium chamber in the throat section and the thermal stress
results. The rhenium chamber wall thickness in the throat
section has been increased from 0.028 in. to 0.040 in. In
addition, the downstream radius of curvature (DRAD)
increases from 0.2125 to 1.875 to ease the fabrication
problem. The impact on the maximum throat wall temperature
is very small (the maximum temperature increases from 3977 R
to 4022 R). The temperature at rhenium chamber and platinum
BLT interface remains the same, 1084 R. The maximum thermal
stress occurs at the forward end of the rhenium chamber near
platinum BLT. The maximum nodal stress for the rhenium
chamber is 44.6 ksi which is about 10 ksi lower than the
yield stress of the rhenium. The average thermal stress for
the platinum BLT is approximately 20 ksi.

THERMAL ANALYSIS RESULTS

The temperature distribution for the 14 1bF rhenium
chamber with a 15:1 nozzle is shown in Fig. 1. The maximum
wall temperature is 4022 R occurring at approximately 0.15
in. upstream of the throat. This temperature represents an
increase of 45 R which is considered negligible. The
temperature distributions in the platinum BLT and steel
flange are the same as Ref. (1). Therefore, the results of
transient temperature variations presented in Ref. (1) are
applicable for this design. The shutdown heat soak back
analysis is not conducted for this design. At the exit of
the nozzle (15:1), the predicted wall temperature is 2960 R
(2500 F) which is the current maximum operating temperature
of the 14 1bF columbium skirt. At an expansion area ratio of
9:1, the predicted wall temperature is 3110 R (2650 F).
However, the results is considered conservative since the
combustion gas is assumed fully mixed. The actual wall

temperature could be slightly lower.
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THERMAL STRESS ANALYSIS RESULTS

Figure 2 shows the thermal stress distribution for the
14 1bF rhenium chamber. The maximum nodal stress is 44.6 ksi
occurring at the forward end of the rhenium chamber near
platinum BLT. In the throat region, the thermal stress is
only 10 to 15 ksi. :

A blowup illustration of the thermal stress
distribution for the vicinity of platinum BLT is shown in
Fig. 3. It is clear that most of the high thermal stress
concentration occur near the interface of rhenium chamber
and platinum BLT. A radius corner at the interface may
reduce thermal stress. For the platinum BLT, the thermal
stress ranges from less than 5 ksi for BLT itself to
approximately 25 ksi at the interface of platinum BLT and

steel flange.

A deformation plot of the 14 1bF rhenium chamber at the
steady state hot fire conditions is shown in Fig. 4. For the
regions before the throat, rhenium chamber will be pushed
outward radially due to the tension. The maximum radial
displacement is approximately 0.005 in. However, in the
divergent section (nozzle), the nozzle will be pulled inward
radially. The dotted line represents the original chamber
geometry, whereas the solid portion represents the predicted
chamber contour during hot fire.

The effective strain plot for the 14 1bF rhenium
chamber is shown in Fig. 5. The predicted maximum thermal
strain is 1.32%. Since the low cycle fatigue (LCF) curve is
not available, cycle life prediction was not conducted.

e

Felix F. Chen
Research and Technology
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APPENDIX C

High Performance 14 1b Thruster
Random Vibration Test

Test Readiness Review
21 February 1991

September 11, 1992
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Figure C-1. Production 14# RCTM Set Up for X-Axis Vibration Test
Aerojet "A" Area Vibration Test Laboratory
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Figure C-3. Production 14# RCTM Setup for Y-Axis Vibration
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1.0

2.0

3.0

4.0

5.0

6.0

14 RCTM
PRODUCTION ACCEPTANCE VIBRATION

PURPOSE

To demonstrate that the RCTM is capable of withstanding the random
vibration environments as defined in Specification ATC-47145.

REQUIREMENTS

Requirements shall be in accordance with ATC-47145, Paragraph 4.2.14
and Paragraph 3.5 Instrumentation.

APPLICABLE DOCUMENTS

ATC 47145 Acceptance Test Specification,
Reaction Control Thruster Module
AJ10-220

Q & RA Standard 8151070 Supplier Quality Assurance System

Requirements for Aerospace Systems
and Critical Aerospace Components

TEST FACILITY

RCTM Random vibration testing shall be performed in the Dynamics
Test Facility located in ATC Test Operations building 30003 DTF.

SPECTAL INSTRUCTIONS

The RCTM propellant inlet lines as received from manufacturing will
have installed 2 micron nominal filters to prevent contamination of the
internal surfaces.

The RCTM propellant inlet lines shall be capped or plugged at all
times except as required for buildup or test.

Test Equipment

6.1 FACILITY:

Equipment Description
Unholtz-Dickie TA-130-70 Yibration testing system
(includes AM-123)

HP5427A Digital vibration controller
Wyle WM-450 Slip table

Facility sketch Pressure decay leak test
A-14A-1008 system

AAA:AAOOL5 c-10
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6.2 AT AND SE
T-1072424 Vibration fixture

- 6.3 INSTRUMENTATION:

Make/Model Description
- Endevco 2222 series acceleromenter
Endevco 2272 accelerometer
- Unhg1tz—Dickie D22PM charge amplifier
series
Ballantine 320 true RMS meter
B HP1222A oscilloscope
;; Ampex FR1300 tape recorder
. VIZ WP-707 0-25 volt D.C. power supply
Fluke 8000A ‘ digital multimeter
B NOTE : It is permissible to use replacement instrumentation if its

accuracy is equal or better. Any instrument change shall be
noted on the procedure and approved by Quality Control.

6.4 DATA PROCESSING:

- Make/Model Description
. HP5427A Digital vibration controller/
. plotter

Nicolet 660 FFT Analyzer/plotter.

7.0 ACCEPTANCE VIBRATION PROCEDURE SEQUENCE

A-14A-8000 141LB RCTM Non-Hardware Acceptance Vibration Pretest
Procedures Index

A-14A-1000  Non-Hardware Pretest Setup 14LB RCTM Acceptance
Vibration

A-14A-1002 Verification of Overtest Control Monitor Performance
Acceptance Vibration 14LB RCTM

NOTE: The P.C. and/or Q.A. reserves the right to audit or request
demonstration of compliance of A-14A-1002 at any time during the
program,

COMMENT - POTENTIAL COST IMPACT: Demonstration may require removal of
hardware and a complete system setup.

AAA: AAOO1S C-11
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A-14A-8001  14LB RCTM Acce

e ptance Vibration Hardware Pretest Procedures
ndex

A-14A-1003  14LB RCTM Acceptance Vibration Hardware Receiving and
Inspection
A-14A-1004  14LB RCTM Leak Test Tygon Hose Installation

A-14A-1016  Facility GNp Pressurant Certification 14LB RCTM

A-14A-8002  14LB RCTM X Axis Vibration Setup Procedure Index

A-14A-1005 14LB RCTM X Axis Vibration Fixture Installation
Procedure

A-14A-1006 14LB RCTM X Axis Vibration RCTM Installation

A-14A-8005 14LB RCTM Acceptance X Axis Vibration Test Index

A-14A-1007  Acceptance Vibration Pretest Instrumentation and HpP
Controller Setup 14LB RCTM

A-14A-1008 Pretest Leak Check Cart Setup Acceptance Vibration
14LB RCTM

A-14A-1009 Vibration Pressure Decay Leak Check Measurement and
Acceptance Test 14LB RCTM

A-14A-1010 Posttest Leak Check Cart Procedure 14LB RCTM

A-14A-1011 Leak Rate Calculation Acceptance Vibration Test 14LB
RCT™™

A-14A-8006 14LB RCTM Z Axis Vibration Setup Procedure Index

A-14A-1012 14LB RCTM Z Axis Vibration Fixture Installation
Procedure

A-14A-1013  14LB RCTM Z Axis Vibration RCTM Installation

AAA:AAQOLS c-12
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A-14A-8007

A-14A-8008

A-14A-8009

AAA:AA0O15

A-14A-1007
A-14A-1008
A-14A-1009

A-14A-1010
A-14A-1011

A-14A-1014

A-14A-1015

A-14A-1007
A-14A-1008
A-14A-1009

A-14A-1010
A-14A-1011

141LB RCTM Acceptance Z Axis Vibration Test Index

Acceptance Vibration Pretest Instrumentation and HP
Controller Setup 14LB RCTM

Pretest Leak Check Cart Setup Acceptance Vibration
14LB RCTM

Vibration Pressure Decay Leak Check Measurement and
Acceptance Test 14LB RCTM

Posttest Leak Check Cart Procedure 14LB RCTM

Leak Rate Calculation Acceptance Vibration Test 14LB
RCTM

14LB RCTM Y Axis Vibration Setup Procedure Index

141B RCTM Y Axis Vibration Fixture Installation
Procedure

14LB RCTM Y Axis Vibration RCTM Installation

14LB RCTM Acceptance Y Axis Vibration Test Index

Acceptance Vibration Pretest Instrumentation and HP
Controller Setup 14LB RCTM

Pretest Leak Check Cart Setup Acceptance Vibration
14LB RCTM

Vibration Pressure Decay Leak Check Measurement ahd
Acceptance Test 14LB RCTM

Posttest Leak Check Cart Procedure 14LB RCTM

Leak Rate Calculation Acceptance Vibration Test 14LB
RCTM .

C-13
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SUBJECT: Transnittal for Vibration Testing of the

Advanced 14 LBF Chamber for RCTM

DISTRIBUTION: D.M. Jassowski, R.J. Miller, L. Schoenman,
N.R. Shimp, 5242 File

ENCLOSURES: (1) Vallance, C.S., Vibration Testing of the
Advanced 14 LBF Chamber for the RCTM

Enclosure (1) contains predictions regarding the survivability
of the Advanced 14 LBF Chamber for the RCTM to qualification
level Reaction Control Thrust Module vibration levels.

The predictions are based on a limited number of test
measurements made at acceptance level vibration levels.
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APPROVED BY:

E. Lueders, Manager
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1.0 INTRODUCTION

Recent low level testing of the Advanced 14 LBF Chamber
mounted on a Reaction Control Thrust Module (RCTM) has proven
the ability of the iridium/rhenium chamber to meet max-expected
vibration levels expected during launch vehicle ascent.

The chamber's ability to withstand a 3 dB margin test is
addressed. Predicated on limited test data, predicted stress
jevels of the throat and chamber root are explored.

Brevity 1is employed in the documentation of the
calculations to conserve resources.

2.0 SUMMARY OF RESULTS

calculations for the rhenium chamber show positive margins
as indicated in Table I.

Table I: Predicted Margins of Safety
Location M.S.
Chamber Throat 0.65
Chamber Root 2.78
Trip Ring Root 2.38

Analysis of the measurement test functions indicate the

highest throat strain to be 93 pin/ingps. A crest factor of 3.9
was seen in the time histories and is used for the strength

calculations.

Bi-propellant valve accelerometers show frequency response
and level to be closely identical to measurements made during

RCTM engineering unit evaluations.

Although the limited number of test functions hinders mode
jidentification, chamber bending modes are surmised to be below
450 Hz. Higher frequency modes are presumed to be flexural in

nature.

D-4



CONCLUSIONS

1) The Advanced 14 LBF Chamber will survive an increase
in vibration levels of 3 dB.

2) Positive margins of safety are predicted at all
critical locations for a vibration load increased by 3

dB.

3) The most critically stressed area is the chamber
throat.

4) cantilevered bending modes of the chamber occur below
450 Hz.

5) More instrumentation is required to accurately predict
chamber flexural n}odes and to better understand the

stress state of the chamber.

RECOMMENDATIONS

1) Perform a vibration test of the Advanced 14 LBF
Chamber at vibration levels increased by 3 dB to
simulate qualification level ascent loading.

DETAILED ANALYSIS
5.1 Strain Gage Data Reduction

Four strain gages located at the chamber throat were

measured. They were evenly spaced around the circumference and
oriented in the axial direction. See Figures 1 and 2. All
strain gage data is presented in Appendix B. Table II shows the

rms micro-strain levels for each gage and test.
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Table II: Strain Gage Measurements

TEST AXIS
Strain Gage X Y Z
H€rms E€rms L€rms
1 60 16 86
2 13 35 15
3 64 11 93
4 14 29 11

Examination of time histories (e.g. Z axis, strain
gage #3) show peak strain levels of -363 ueg-p with rms levels
of 93 peérpg. This yields an observed crest factor of

CF = 363 / 93
CF = 3.9

This crest factor will be used for all strength
calculations to follow.

The largest modes are all below 450 Hz. Due to the
orientation of the strain gages these modes are likely to be
chamber bending modes.

5.2 Material Properties

These material properties are approximate and reported
in IOM 9990:R&T:2797 with revisions by M.L. Gage. See Appendix
A.

5.2.1 Rhenium

Young's Modulus, E 65 x 10° psi
Density, 7 1.966 x 10°3 1b-s2/in?
Yield Strength, oy 55 x 10° psi
Ultimate Strength, oy 170 x 103 psi
5.2.2 Platinum
Young's Modulus, E 21 x 10° psi
Density, 1 2.006 x 1073 lb-sz/in4
Yield Strength, o 30 x 103 psi
Ultimate Strength, oy 60 x 103 psi

D-6



5.3 Calculated Stress in the Rhenium Throat Due to Test

only strength calculations to follow, no fatigue

calculations.

0 = E X €peas

and,

(65 x 10% psi) (363 pin/in)

g
o = 23.6 x 10> psig-p

Therefore the measured stress in the throat region is
well below the yield limit. Projected stress, linearly scaled
for a vibration test 3 dB higher would be

o3gp = (23.6 X 103) (/2)

33.3 x 103 psip-p

03dB

The margin of safety with no s;fety factor is
M.S. = (0y / 03dB) — 1
M.S. = (55 / 33.3) -1
.S, = 0.6

No safety factor has been used because this is non-

flight hardware. It should be noted however that the material

properties are not accurately known.

5.4 Stress at the Chamber and Trip Ring Roots due to Test

In order to approximate stress at the roots assume
cantilevered beam model with applied moment. The applied moment
will be developed with two techniques for comparison purposes.
In the first technique, the applied moment is determined by
backing out the moment required to produce the stresses in
Section 5.3. In the second technique, the load is approximated
by inertial loading of chamber, WG, and moment arm determined by

the c.g. of the chamber.
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5.4.1 Chamber Mass Properties

Determine chamber mass properties roughly in three
sections; 1) straight hollow cylinder from root to convergent
section of throat, 2) convergent section of throat, and 3)
divergent nozzle section. All section properties are taken from
hardware drawings as listed below and Appendix D which contains
the as-built wall thicknesses.

Name Drawing No.
Nozzle, 14 1lbs 1204474
Chamber, 14 1b 1204490
Ring, Trip 1204495

5.4.1.1 First section

r = 1.966 x 1073 1b-s2/in* ro & 0.389 in
1 = 1.650 in ri ® 0.364 in
m =71l (ro2 - riz)
m; = 192 x 1076 1b-s?/in

Center of gravity is located at the centroid, thus
Xparl ® 0.825 in.

5.4.1.2 Second section

Use hollow frustum of cone formula for volume.

r = 1.966 x 10”3 1b-s2/in4 ry; ® 0.364 in
h = 0.61 in Yo ® 0.209 in
rio ® 0.389 in rpi ® 0.160 in

my = 1/3 1 7 h [r102 + (r10) (F20) + T20°

- r112 - (r1i) (r2i) - r212]

75.3 x 10”6 1b-s2/in

m2

D-8



Center of gravity is located 1/3 of the distance from
the largest end towards the small end of the frustum, thus Xpar2
~ 1.853 in.

5.4.1.3 Third section

Use hollow frustum of cone formula for volume.

r = 1.966 x 1073 1b-s2/in? rij ® 0.160 in
h = 3.974 in Yao ® 1.403 in
rio ® 0.209 in raj % 1.389 in

mj =1/3 x T x7* xhx [rlo2 + (rio) (rap) + rzoz
- 3 2 - s L3 -— o 2
rii (r1i) (r2i) - r2i]
m3 =1.049 =3 1b-s?/i
3 =1.049 x 10 1b-s“/1n

Center of gravity is located 1/3 of the distance from
the largest end towards the small end of the frustum, thus xXpar3

~ 4.923 in.

5.4.1.4 Determine center of gravity of test section
5.4.1.4.1 Total Mass
Mtot = Zi Wi
Miot = 1.316 =3 1b-s?
tot . x 1077 1b-s“/in
5.4.1.4.2 Center of gravity
Xpar = Zi (M X Xpari) / Mtot

Xpar = 9-987 x 1073 / Mot

5.4.2 Loads

Use two methods to estimate loads to be used for
calculating chamber root stresses.

D-9
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5.4.2.1 Method 1: Load Based on Measured Strain

Assume all stress in chamber throat is produced by
moment application. Back calculate required moment to produce
this stress. Use bending stress formula

c=Mc /1
Rearranging for M yields
M=0I/C

and 0 = 23600 psi (para 5.3), I = 984 X 10"% in? (para
5.4.2.1.1), ¢ = 0.209 in. Thus

111 in-lbs

M

5.4.2.1.1 Area Moment of Inertia of Throat

Yo = 0.209 in
r; = 0.160 in

I=x (rg - ri%) /4

984 x 10°8 int

(]
i

5.4.2.2 Method 2: Load Based on Acceleration Measurements

Develop load using F = W G. Where W = mg and G is
measured from test. This load applied at the moment arm
determined by the c.g. will yield another estimate of applied
moment. In comparison to Method 1 (Sect 5.4.2.1), this load
should be considered conservative. It is calculated as follows

M=Mot 9gG1
where Myot = 1.316 x 1073 1b-s?/in (para 5.4.1.4.1), g = 386
1 = 4.

in/sz, G = 74.1 G's (para 5.4.2.2.1) and 151 in (para
5.4.1.4.2). Therefore

M = 156.2 in-1bs

D-10



instead of actual modal mass, accounting for the higher value in
comparison to the moment developed in Method 1 (para 5.2.4.1).
The numbers appear to be a relatively good check. The smaller
number based on actual strain will be used for further analysis.

5.4.2.2.1 Nozzle Accelerometer Data Reduction

All accelerometer data reduction is presented in
Appendix C as power spectral density plots. The orientation of
the accelerometers is seen in Figures 1 and 3. This orientation
allows the accels to respond to all modes of the chamber;
bending, breathing and flexural. There are not enough accels to
determine the modes accurately. However, in conjunction with
the strain gages, the bending modes are expected below 450 Hz.

The responses from these lower modes only are used in
determining the chamber root stresses and are presented in Table
III. Use maximum rms value encountered during any of thr
of testing. See Appendix C for particular peaks used.

determined using

ee axes
RMS is

~ (£ (PSDj * 6£i)1

Grms
Table III: Accelerometer Measurements
TEST AXIS
Accelerometer X Y Z
Grms Gyrms Grms
Nozzle X 19 4 4
Nozzle Y 7.9 6 5.6

A crest factor of 3.9 on 19 Gpms should be used in

accordance with section 5.1. Therefore, Go-p = 74.1.

Matching accelerometers located on the bi-propellant

valve with the engineering unit RCTM (Reference (1)) shows a
good match in frequency and magnitude. No other accels for
which matches can be made exist. The nozzle accels are very

different because of geometry changes.
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5.4.3 Calculated Stress in the Chamber and Trip Ring Roots
Ccalculate stresses using bending formulation. No
shear included.
5.4.3.1 Area moment of Inertia
Determine area moments of inertia for bending

calculations in paragraph 5.4.3.2 and 5.4.3.3.

5.4.3.1.1 Chamber
I =7 X (ro4 - ri4) / 4
I =nxx (0.389% - 0.364%) / 4
I = 0.0042 in?

5.4.3.1.2 Trip Ring

il

I =1mx (0.374% - 0.325%) / 4

I 0.0066

5.4.3.2 Stress in the Chamber Root
Use bending loads only, ignore shear.
c=Mc/ 1

where c is distance to outer fiber from neutral axis. So,

o = 111 x 0.389 / 0.0042
o = 10280 psi
D-12



Linearly scale for 3 dB amplification

10280 x /2

93daB

14540 psi

03dB

The margin of safety with no safety or stress
concentration factors is

M.S. = (55 / 14.54) - 1
.S. = 7 4

5.4.3.3 Stress at Trip Ring
Use bending loads only, ignore shear.
c=Mxc / I
where c is distance to outer fiber from neutral axis. So,
o = 111 x 0.374 / 0.0066
0 = 6290 psi

Linearly scale for 3 dB amplification

03dB 6290 x /2

8895 psi

03dB

The margin of safety with no safety or stress concentration
factors is

M.S. = (Gy / 03dB) - 1
M.S. = (30 / 8.9) -1
8. = 2.37
D-13
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Company

24 January 1990
F90:RT:2797

To: A. J. Farahyar

From; M. L. Gage

Subject: Vibration Analysis of 14 1bF Chamber
Copies to: Len Schoenman, Sandy Rosenberg, Walt Langhi

At our introduction yesterday we discussed the objectives of
the 14 1bF Ir/Re chamber program. We are undertaking the
vibration analysis of this chamber to determine important
design parameters for a chamber which will pass current
qualification vibration requirements, namely, (1) skirt
thickness and material selection and (23) front end external
support requirements. To establish answers to these design
1ssues, [ anticipate that three iterations of modeling and
dynamic analysis will be required. This memorandum presents
the ground rules to be used for the first case of the
vibration analysis.

1. Chamber Geometry

The chamber geometry to be used for the first case 1s shown
on attached drawing 1204474, with two changes:

(1) the length from the front of the chamber to the chamber
throat will be 1.912" and (2) the wall thickness of the
chamber will be 0.014" in the region from ¥ = 0,769" to the
end of the nozzle.

The conceptual layout of the fromt end of the chamber is as
shown in Figure 1. [ anticipate that additional structural
Suppart will be required in the front to take the stress off
the platinum. I anticipate that this first analysis will
estimate the loads which must be accompdated. Subsequent
interations of the analysis will establish the effectiveness
of front end support solutions.

2. Material Properties

Assume the following room temperature material properties:

(1) Rhenium

Modulus of Elasticity 63,000,000 psi
Density 1.966€e-3 1b-s"2/in"4
Ultimate Strength 170,000 psi

Yield Strength 55,000 psi

(2) Platinum
Modulus of Elasticity 21,000,000 psi
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STRAIN GAGE DATA REDUCTION
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APPENDIX D:

AS-BUILT CHAMBER WALL THICKNESSES
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